inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the solid solution (Sr1.65Pb0.35)Al6O11

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 May 2014; accepted 6 May 2014; online 1 August 2014)

The title compound, di(strontium/lead) hexa­aluminate, is a member of the solid solution series (Sr2-xPbx)Al6O11. It contains two statistically occupied M2+ (M = Sr, Pb) sites [both with site symmetries ..m; Sr:Pb occupancy ratios = 0.756 (2):0.244 (2) and 0.8968 (19):0.1032 (19)] that are located in the voids of an aluminate framework. The M2+ sites are surrounded by six and seven O atoms, respectively, if a cut-off M—O distance of 3 Å is chosen, resulting in considerably distorted MOx polyhedra. The aluminate framework consists of three AlO6 octa­hedra (two with point-group symmetries ..2/m and one with ..2) sharing edges to form partially filled layers extending parallel to (100) and located at x = 0, 0.5. Adjacent AlO6 layers are linked by a network made up from two crystallographically different AlO4 tetra­hedra by sharing corners.

1. Related literature

The title compound was obtained during experiments to prepare the strontium analogue of the lead calcium aluminate PbCa2Al8O15 (Artner & Weil, 2012[Artner, C. & Weil, M. (2012). Acta Cryst. C68, i1-i3.]). For another member of the isotypic solid solution series (Sr2-xPbx)Al6O11 with a different Sr:Pb ratio, see: Plötz & Müller-Buschbaum (1982[Plötz, K. B. & Müller-Buschbaum, H. (1982). Z. Anorg. Allg. Chem. 491, 253-258.]).

2. Experimental

2.1. Crystal data

  • (Sr1.65Pb0.35)Al6O11

  • Mr = 555.27

  • Orthorhombic, P n n m

  • a = 22.0299 (4) Å

  • b = 4.8802 (1) Å

  • c = 8.3995 (2) Å

  • V = 903.03 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 16.94 mm−1

  • T = 296 K

  • 0.12 × 0.05 × 0.05 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.236, Tmax = 0.485

  • 10434 measured reflections

  • 2509 independent reflections

  • 2190 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.061

  • S = 1.05

  • 2509 reflections

  • 101 parameters

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.51 e Å−3

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

The title compound was obtained during experiments to prepare the strontium analogue of the lead calcium aluminate PbCa2Al8O15 (Artner & Weil, 2012). For another member of the isotypic solid solution series (Sr2 - xPbx)Al6O11 with a different Sr:Pb ratio, see: Plötz & Müller-Buschbaum (1982).

Experimental top

A mixture of 2PbCO3.Pb(OH)2, SrCO3 and Al(OH)3 (molar ratio 1:6:24) was heated in a platinum crucible over a period of 24 h to 1233 K, kept at this temperature for 10 h and cooled over a period of 24 h to room temperature. A few colourless platy crystals of the title compound grew on top of a brick-red microcrystalline matrix that was not further analysed.

Refinement top

Atom labels and starting parameters for refinement were taken from the isotypic compound (Sr1.33Pb0.67)Al6O11 (Plötz & Müller-Buschbaum, 1982). The two M2+ sites are statistically occupied by Pb and Sr. For each site, full occupancy was considered and the occupancy factors refined independently. The highest and lowest remaining electron densities are located 0.64 Å and 0.72 Å, respectively, from the site (Sr1/Pb1).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of (Sr1.65Pb0.35)Al6O11 in a projection along [010]. AlO6 octahedra are yellow, AlO4 octahedra are red. Displacement ellipsoids are drawn at the 97% probability level. Bonds to the statistically occupied M2+ sites (M = Sr, Pb) were omitted for clarity. [Symmetry code: i) x + 1/2, y, z.]
[Figure 2] Fig. 2. The crystal structure of (Sr1.65Pb0.35)Al6O11 in a projection along [100] showing one layer of edge-sharing AlO6 octahedra and the connecting layer of corner-sharing AlO4 tetrahedra as well as one layer of M2+ sites (M = Sr, Pb). Colour code and displacement ellipsoids are as in Fig. 1.
Di(strontium/lead) hexaaluminate top
Crystal data top
(Sr1.65Pb0.35)Al6O11F(000) = 1030
Mr = 555.27Dx = 4.084 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2nCell parameters from 3598 reflections
a = 22.0299 (4) Åθ = 3.7–32.5°
b = 4.8802 (1) ŵ = 16.94 mm1
c = 8.3995 (2) ÅT = 296 K
V = 903.03 (3) Å3Plate, colourless
Z = 40.12 × 0.05 × 0.05 mm
Data collection top
Bruker SMART CCD
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 37.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3037
Tmin = 0.236, Tmax = 0.485k = 68
10434 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0244P)2 + 0.7036P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.001
wR(F2) = 0.061Δρmax = 1.12 e Å3
S = 1.05Δρmin = 1.51 e Å3
2509 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
101 parametersExtinction coefficient: 0.0022 (3)
0 restraints
Crystal data top
(Sr1.65Pb0.35)Al6O11V = 903.03 (3) Å3
Mr = 555.27Z = 4
Orthorhombic, PnnmMo Kα radiation
a = 22.0299 (4) ŵ = 16.94 mm1
b = 4.8802 (1) ÅT = 296 K
c = 8.3995 (2) Å0.12 × 0.05 × 0.05 mm
Data collection top
Bruker SMART CCD
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2190 reflections with I > 2σ(I)
Tmin = 0.236, Tmax = 0.485Rint = 0.042
10434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027101 parameters
wR(F2) = 0.0610 restraints
S = 1.05Δρmax = 1.12 e Å3
2509 reflectionsΔρmin = 1.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.364795 (11)0.12254 (4)0.00000.01369 (7)0.756 (2)
Pb20.155369 (11)0.54620 (5)0.00000.01112 (8)0.8968 (19)
Sr10.364795 (11)0.12254 (4)0.00000.01369 (7)0.244 (2)
Sr20.155369 (11)0.54620 (5)0.00000.01112 (8)0.1032 (19)
Al10.00000.00000.50000.00496 (19)
Al20.00000.50000.00000.00509 (19)
Al30.00000.50000.66773 (9)0.00472 (14)
Al40.21348 (3)0.11886 (11)0.29528 (7)0.00638 (12)
Al50.07460 (3)0.00878 (11)0.17903 (6)0.00472 (11)
O10.05605 (9)0.8271 (4)0.00000.0055 (3)
O20.29866 (14)0.5677 (5)0.00000.0197 (5)
O30.45181 (6)0.3230 (3)0.84219 (15)0.0060 (2)
O40.34669 (7)0.4960 (3)0.31766 (19)0.0118 (3)
O50.45552 (9)0.8297 (4)0.00000.0055 (3)
O60.95192 (6)0.6515 (3)0.83661 (15)0.0062 (2)
O70.28328 (7)0.9728 (3)0.24121 (19)0.0117 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01691 (12)0.01109 (9)0.01306 (9)0.00260 (7)0.0000.000
Pb20.00748 (12)0.01603 (12)0.00985 (10)0.00238 (8)0.0000.000
Sr10.01691 (12)0.01109 (9)0.01306 (9)0.00260 (7)0.0000.000
Sr20.00748 (12)0.01603 (12)0.00985 (10)0.00238 (8)0.0000.000
Al10.0059 (5)0.0041 (4)0.0049 (4)0.0004 (4)0.0000.000
Al20.0039 (5)0.0070 (4)0.0044 (4)0.0012 (4)0.0000.000
Al30.0043 (3)0.0048 (3)0.0050 (3)0.0001 (2)0.0000.000
Al40.0049 (3)0.0067 (2)0.0075 (2)0.00021 (18)0.00054 (18)0.00025 (16)
Al50.0035 (2)0.0052 (2)0.0054 (2)0.00008 (18)0.00009 (17)0.00014 (16)
O10.0041 (8)0.0060 (7)0.0063 (7)0.0011 (6)0.0000.000
O20.0319 (15)0.0187 (10)0.0086 (8)0.0063 (10)0.0000.000
O30.0058 (6)0.0064 (5)0.0058 (5)0.0007 (4)0.0006 (4)0.0001 (4)
O40.0046 (6)0.0151 (6)0.0157 (6)0.0009 (5)0.0023 (5)0.0065 (5)
O50.0065 (8)0.0045 (7)0.0055 (6)0.0002 (6)0.0000.000
O60.0058 (6)0.0063 (5)0.0065 (5)0.0013 (4)0.0007 (4)0.0000 (4)
O70.0067 (6)0.0087 (6)0.0196 (7)0.0000 (5)0.0011 (5)0.0016 (5)
Geometric parameters (Å, º) top
Pb1—O5i2.4569 (19)Al1—O3vii1.9055 (13)
Pb1—O3ii2.5275 (13)Al1—O3xv1.9055 (13)
Pb1—O3iii2.5275 (13)Al2—O6xi1.8847 (13)
Pb1—O22.616 (3)Al2—O6xvi1.8847 (13)
Pb1—O7iv2.8042 (16)Al2—O6xvii1.8847 (13)
Pb1—O7i2.8042 (16)Al2—O6x1.8847 (13)
Pb1—O2i3.075 (3)Al2—O12.0181 (19)
Pb1—O43.2558 (17)Al2—O1xviii2.0181 (19)
Pb1—O4v3.2558 (17)Al3—O3xv1.9021 (13)
Pb2—O12.582 (2)Al3—O3xix1.9021 (13)
Pb2—O7vi2.5846 (16)Al3—O5xx1.9067 (14)
Pb2—O7vii2.5846 (16)Al3—O5vi1.9067 (14)
Pb2—O4viii2.6771 (15)Al3—O6xxi1.9186 (14)
Pb2—O4ix2.6771 (15)Al3—O6xxii1.9186 (14)
Pb2—O6x2.8983 (14)Al4—O4vi1.7368 (16)
Pb2—O6xi2.8983 (14)Al4—O7i1.7548 (17)
Pb2—O4vii3.0914 (17)Al4—O7vi1.7556 (16)
Pb2—O4vi3.0914 (17)Al4—O2vi1.7581 (8)
Pb2—O23.158 (3)Al5—O4vi1.7352 (16)
Al1—O5xii1.8841 (18)Al5—O3vii1.7433 (14)
Al1—O5vi1.8841 (18)Al5—O6xi1.7627 (14)
Al1—O3xiii1.9055 (13)Al5—O1i1.7929 (11)
Al1—O3xiv1.9055 (13)
O5i—Pb1—O3ii66.93 (5)O6xvii—Al2—O6x180.0
O5i—Pb1—O3iii66.93 (5)O6xi—Al2—O188.08 (5)
O3ii—Pb1—O3iii63.26 (6)O6xvi—Al2—O191.92 (5)
O5i—Pb1—O2159.41 (8)O6xvii—Al2—O191.92 (5)
O3ii—Pb1—O295.80 (6)O6x—Al2—O188.08 (5)
O3iii—Pb1—O295.80 (6)O6xi—Al2—O1xviii91.92 (5)
O5i—Pb1—O7iv111.67 (4)O6xvi—Al2—O1xviii88.08 (5)
O3ii—Pb1—O7iv164.89 (4)O6xvii—Al2—O1xviii88.08 (5)
O3iii—Pb1—O7iv101.98 (4)O6x—Al2—O1xviii91.92 (5)
O2—Pb1—O7iv81.94 (5)O1—Al2—O1xviii180.0
O5i—Pb1—O7i111.67 (4)O3xv—Al3—O3xix174.98 (9)
O3ii—Pb1—O7i101.98 (4)O3xv—Al3—O5xx92.40 (7)
O3iii—Pb1—O7i164.89 (4)O3xix—Al3—O5xx83.88 (7)
O2—Pb1—O7i81.94 (5)O3xv—Al3—O5vi83.88 (7)
O7iv—Pb1—O7i92.52 (6)O3xix—Al3—O5vi92.40 (7)
O5i—Pb1—O2i82.72 (7)O5xx—Al3—O5vi84.72 (9)
O3ii—Pb1—O2i134.44 (5)O3xv—Al3—O6xxi91.22 (6)
O3iii—Pb1—O2i134.44 (5)O3xix—Al3—O6xxi92.49 (6)
O2—Pb1—O2i117.87 (11)O5xx—Al3—O6xxi176.38 (7)
O7iv—Pb1—O2i57.79 (4)O5vi—Al3—O6xxi95.43 (6)
O7i—Pb1—O2i57.79 (4)O3xv—Al3—O6xxii92.49 (6)
O5i—Pb1—O4115.16 (3)O3xix—Al3—O6xxii91.22 (6)
O3ii—Pb1—O456.39 (4)O5xx—Al3—O6xxii95.43 (6)
O3iii—Pb1—O4107.82 (4)O5vi—Al3—O6xxii176.38 (7)
O2—Pb1—O457.78 (3)O6xxi—Al3—O6xxii84.65 (9)
O7iv—Pb1—O4131.27 (4)O4vi—Al4—O7i112.79 (8)
O7i—Pb1—O458.36 (4)O4vi—Al4—O7vi105.98 (8)
O2i—Pb1—O4115.78 (3)O7i—Al4—O7vi108.60 (6)
O5i—Pb1—O4v115.16 (3)O4vi—Al4—O2vi111.66 (11)
O3ii—Pb1—O4v107.82 (4)O7i—Al4—O2vi109.19 (12)
O3iii—Pb1—O4v56.39 (4)O7vi—Al4—O2vi108.46 (10)
O2—Pb1—O4v57.78 (3)O4vi—Al5—O3vii107.59 (8)
O7iv—Pb1—O4v58.36 (4)O4vi—Al5—O6xi111.47 (7)
O7i—Pb1—O4v131.27 (4)O3vii—Al5—O6xi115.93 (7)
O2i—Pb1—O4v115.78 (3)O4vi—Al5—O1i102.91 (8)
O4—Pb1—O4v110.07 (5)O3vii—Al5—O1i109.03 (7)
O1—Pb2—O7vi121.11 (4)O6xi—Al5—O1i109.09 (7)
O1—Pb2—O7vii121.11 (4)Al5xxiii—O1—Al5xxiv114.01 (10)
O7vi—Pb2—O7vii114.50 (7)Al5xxiii—O1—Al2122.05 (6)
O1—Pb2—O4viii63.27 (5)Al5xxiv—O1—Al2122.05 (6)
O7vi—Pb2—O4viii68.99 (5)Al5xxiii—O1—Pb293.98 (7)
O7vii—Pb2—O4viii127.14 (5)Al5xxiv—O1—Pb293.98 (7)
O1—Pb2—O4ix63.27 (4)Al2—O1—Pb295.65 (7)
O7vi—Pb2—O4ix127.14 (5)Al4ix—O2—Al4viii155.98 (17)
O7vii—Pb2—O4ix68.99 (5)Al4ix—O2—Pb1101.69 (8)
O4viii—Pb2—O4ix69.79 (7)Al4viii—O2—Pb1101.69 (8)
O1—Pb2—O6x59.05 (4)Al4ix—O2—Pb1xxiii86.97 (9)
O7vi—Pb2—O6x141.12 (4)Al4viii—O2—Pb1xxiii86.97 (9)
O7vii—Pb2—O6x88.97 (4)Pb1—O2—Pb1xxiii117.87 (11)
O4viii—Pb2—O6x122.01 (4)Al4ix—O2—Pb281.53 (10)
O4ix—Pb2—O6x89.33 (4)Al4viii—O2—Pb281.53 (10)
O1—Pb2—O6xi59.05 (4)Pb1—O2—Pb2121.94 (10)
O7vi—Pb2—O6xi88.97 (4)Pb1xxiii—O2—Pb2120.19 (8)
O7vii—Pb2—O6xi141.12 (4)Al5xxv—O3—Al3xiv125.65 (8)
O4viii—Pb2—O6xi89.33 (4)Al5xxv—O3—Al1xix119.80 (7)
O4ix—Pb2—O6xi122.01 (4)Al3xiv—O3—Al1xix95.46 (6)
O6x—Pb2—O6xi56.52 (5)Al5xxv—O3—Pb1xxvi111.13 (7)
O1—Pb2—O4vii116.66 (5)Al3xiv—O3—Pb1xxvi97.22 (5)
O7vi—Pb2—O4vii107.69 (4)Al1xix—O3—Pb1xxvi103.48 (5)
O7vii—Pb2—O4vii58.03 (4)Al5xxv—O3—Sr1xxvi111.13 (7)
O4viii—Pb2—O4vii174.49 (4)Al3xiv—O3—Sr1xxvi97.22 (5)
O4ix—Pb2—O4vii115.37 (5)Al1xix—O3—Sr1xxvi103.48 (5)
O6x—Pb2—O4vii57.61 (4)Al5viii—O4—Al4viii139.38 (10)
O6xi—Pb2—O4vii86.18 (4)Al5viii—O4—Pb2vi92.13 (6)
O1—Pb2—O4vi116.66 (5)Al4viii—O4—Pb2vi125.63 (8)
O7vi—Pb2—O4vi58.03 (4)Al5viii—O4—Sr2vi92.13 (6)
O7vii—Pb2—O4vi107.69 (4)Al4viii—O4—Sr2vi125.63 (8)
O4viii—Pb2—O4vi115.37 (5)Al5viii—O4—Pb2viii88.60 (6)
O4ix—Pb2—O4vi174.49 (4)Al4viii—O4—Pb2viii87.68 (6)
O6x—Pb2—O4vi86.18 (4)Pb2vi—O4—Pb2viii115.37 (5)
O6xi—Pb2—O4vi57.61 (4)Sr2vi—O4—Pb2viii115.37 (5)
O4vii—Pb2—O4vi59.39 (5)Al5viii—O4—Pb184.88 (6)
O1—Pb2—O2146.03 (6)Al4viii—O4—Pb180.74 (6)
O7vi—Pb2—O258.80 (4)Pb2vi—O4—Pb190.68 (5)
O7vii—Pb2—O258.80 (4)Sr2vi—O4—Pb190.68 (5)
O4viii—Pb2—O289.41 (5)Pb2viii—O4—Pb1153.38 (5)
O4ix—Pb2—O289.41 (5)Al1viii—O5—Al3xxvii96.02 (7)
O6x—Pb2—O2145.70 (4)Al1viii—O5—Al3viii96.02 (7)
O6xi—Pb2—O2145.70 (4)Al3xxvii—O5—Al3viii95.28 (9)
O4vii—Pb2—O292.50 (5)Al1viii—O5—Sr1xxiii156.90 (10)
O4vi—Pb2—O292.50 (5)Al3xxvii—O5—Sr1xxiii99.48 (6)
O5xii—Al1—O5vi180.0Al3viii—O5—Sr1xxiii99.48 (6)
O5xii—Al1—O3xiii95.60 (6)Al1viii—O5—Pb1xxiii156.90 (10)
O5vi—Al1—O3xiii84.40 (6)Al3xxvii—O5—Pb1xxiii99.48 (6)
O5xii—Al1—O3xiv84.40 (6)Al3viii—O5—Pb1xxiii99.48 (6)
O5vi—Al1—O3xiv95.60 (6)Al5xi—O6—Al2xxviii127.55 (7)
O3xiii—Al1—O3xiv180.0Al5xi—O6—Al3xxix119.36 (7)
O5xii—Al1—O3vii84.40 (6)Al2xxviii—O6—Al3xxix94.41 (6)
O5vi—Al1—O3vii95.60 (6)Al5xi—O6—Pb2xi94.48 (6)
O3xiii—Al1—O3vii91.84 (8)Al2xxviii—O6—Pb2xi89.02 (5)
O3xiv—Al1—O3vii88.16 (8)Al3xxix—O6—Pb2xi132.22 (6)
O5xii—Al1—O3xv95.60 (6)Al4xxiii—O7—Al4viii118.72 (9)
O5vi—Al1—O3xv84.40 (6)Al4xxiii—O7—Pb2viii100.62 (7)
O3xiii—Al1—O3xv88.16 (8)Al4viii—O7—Pb2viii105.19 (7)
O3xiv—Al1—O3xv91.84 (8)Al4xxiii—O7—Sr2viii100.62 (7)
O3vii—Al1—O3xv180.0Al4viii—O7—Sr2viii105.19 (7)
O6xi—Al2—O6xvi180.0Al4xxiii—O7—Pb1xxiii129.96 (8)
O6xi—Al2—O6xvii86.54 (8)Al4viii—O7—Pb1xxiii95.99 (7)
O6xvi—Al2—O6xvii93.46 (8)Pb2viii—O7—Pb1xxiii103.69 (5)
O6xi—Al2—O6x93.46 (8)Sr2viii—O7—Pb1xxiii103.69 (5)
O6xvi—Al2—O6x86.54 (8)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y1, z; (v) x, y, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z1/2; (x) x+1, y+1, z1; (xi) x+1, y+1, z+1; (xii) x1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z1/2; (xiv) x+1/2, y1/2, z+3/2; (xv) x1/2, y+1/2, z+3/2; (xvi) x1, y, z1; (xvii) x1, y, z+1; (xviii) x, y+1, z; (xix) x+1/2, y+1/2, z+3/2; (xx) x1/2, y+3/2, z+1/2; (xxi) x+1, y+1, z; (xxii) x1, y, z; (xxiii) x, y+1, z; (xxiv) x, y+1, z; (xxv) x+1/2, y+1/2, z+1/2; (xxvi) x, y, z+1; (xxvii) x+1/2, y+3/2, z1/2; (xxviii) x+1, y, z+1; (xxix) x+1, y, z.

Experimental details

Crystal data
Chemical formula(Sr1.65Pb0.35)Al6O11
Mr555.27
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)296
a, b, c (Å)22.0299 (4), 4.8802 (1), 8.3995 (2)
V3)903.03 (3)
Z4
Radiation typeMo Kα
µ (mm1)16.94
Crystal size (mm)0.12 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.236, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
10434, 2509, 2190
Rint0.042
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.05
No. of reflections2509
No. of parameters101
Δρmax, Δρmin (e Å3)1.12, 1.51

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationArtner, C. & Weil, M. (2012). Acta Cryst. C68, i1–i3.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationPlötz, K. B. & Müller-Buschbaum, H. (1982). Z. Anorg. Allg. Chem. 491, 253–258.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds