inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of K[Hg(SCN)3] – a redetermination

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 June 2014; accepted 9 June 2014; online 1 August 2014)

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium tri­thio­cyanato­mercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952[Zhdanov, G. S. & Sanadze, V. V. (1952). Zh. Fiz. Khim. 26, 469-478.]). Zh. Fiz. Khim. 26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+ cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4 polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting 1[HgS2/1S2/2] chains are also part of SCN anions that link these chains with the K+ cations into a three-dimensional network. The K—N bond lengths of the distorted KN7 polyhedra lie between 2.926 (2) and 3.051 (3) Å.

1. Related literature

K[Hg(SCN)3] has been determined originally in the space group P21/m with Z = 8, based on room-temperature data (Zhdanov & Sanadze, 1952[Zhdanov, G. S. & Sanadze, V. V. (1952). Zh. Fiz. Khim. 26, 469-478.]). A subsequent redetermination revealed a doubled unit cell in P21/n, Z = 4, based on intensity data measured at 150 K (Bowmaker et al., 1998[Bowmaker, G. A., Churakov, A. V., Harris, R. K., Howard, J. A. K. & Apperley, D. C. (1998). Inorg. Chem. 37, 1734-1743.]). However, there is no report on an apparent phase transition of K[Hg(SCN)3] between these two temperatures. For symmetry relationships between crystal structures, see: Müller (2013[Müller, U. (2013). In Symmetry Relationships between Crystal Structures. Oxford University Press.]).

2. Experimental

2.1. Crystal data

  • K[Hg(NCS)3]

  • Mr = 413.93

  • Monoclinic, P 21 /m

  • a = 11.2727 (11) Å

  • b = 4.0775 (4) Å

  • c = 10.9764 (10) Å

  • β = 114.951 (4)°

  • V = 457.44 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 17.90 mm−1

  • T = 293 K

  • 0.30 × 0.06 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.226, Tmax = 0.504

  • 11940 measured reflections

  • 3765 independent reflections

  • 2358 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.03

  • 3765 reflections

  • 68 parameters

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

K[Hg(SCN)3] has been determined originally in the space group P21/m with Z = 8, based on room-temperature data (Zhdanov & Sanadze, 1952). A subsequent redetermination revealed a doubled unit cell in P21/n, Z = 4, based on intensity data measured at 150 K (Bowmaker et al., 1998). However, there is no report on an apparent phase transition of K[Hg(SCN)3] between these two temperatures. For symmetry relationships between crystal structures, see: Müller (2013).

Experimental top

Hg(SCN)2 (0.5 g) was dissolved under heating in a water–ethanol mixture (1:1 v/v) to which KSCN (0.1 g) was added. After one week, colourless crystals with a lath-like form were obtained from the remaining solution.

Refinement top

For better comparison with the previous determination by Zhdanov & Sanadze (1952), the original nonreduced cell setting as well as the atom labelling and the atomic coordinates were used as starting parameters for the refinement.

Bowmaker et al. (1998) reported a doubled unit cell for K[Hg(SCN)3] with a = 11.9119 (3), b = 4.0201 (1), c = 18.7095 (3) Å, β = 91.852 (1)°, P21/n, Z = 4. However, no superstructure reflections were found in the current redetermination at 293 K, while Bowmaker et al. (1998) used intensity data measured at 150 K. Therefore it appears likely that K[Hg(SCN)3] has a phase transition between these two temperatures. The two unit cells of the room-temperature phase in P21/m and the low-temperature phase in P21/n are related by the matix (101,010,101), revealing a klassengleiche symmetry reduction of index 2 (Müller, 2013).

The highest and lowest electron densities are found 0.66 and 0.28 Å, respectively, from atom S3.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of K[Hg(SCN)3] in a projection along [010]. Displacement ellipsoids are drawn at the 90% probability level. Colour code: Hg green, S yellow, C blue, N magenta, K grey. The HgS4 polyhedron is shown in red.
Potassium [trithiocyanatomercurate(II)] top
Crystal data top
K[Hg(NCS)3]F(000) = 372
Mr = 413.93Dx = 3.005 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 4570 reflections
a = 11.2727 (11) Åθ = 3.4–33.7°
b = 4.0775 (4) ŵ = 17.90 mm1
c = 10.9764 (10) ÅT = 293 K
β = 114.951 (4)°Lath, colourless
V = 457.44 (8) Å30.30 × 0.06 × 0.04 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3765 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 44.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1922
Tmin = 0.226, Tmax = 0.504k = 77
11940 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0218P)2 + 0.0583P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 1.27 e Å3
S = 1.03Δρmin = 1.33 e Å3
3765 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
68 parametersExtinction coefficient: 0.0219 (8)
0 restraints
Crystal data top
K[Hg(NCS)3]V = 457.44 (8) Å3
Mr = 413.93Z = 2
Monoclinic, P21/mMo Kα radiation
a = 11.2727 (11) ŵ = 17.90 mm1
b = 4.0775 (4) ÅT = 293 K
c = 10.9764 (10) Å0.30 × 0.06 × 0.04 mm
β = 114.951 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2358 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.504Rint = 0.032
11940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02868 parameters
wR(F2) = 0.0620 restraints
S = 1.03Δρmax = 1.27 e Å3
3765 reflectionsΔρmin = 1.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.145383 (12)0.25000.725128 (12)0.03813 (6)
K10.59433 (8)0.75000.71536 (7)0.03802 (15)
S10.12455 (7)0.25000.49391 (8)0.03495 (17)
S20.32808 (7)0.75000.80993 (8)0.03121 (14)
S30.06157 (10)0.25000.89262 (10)0.0704 (4)
C10.2848 (3)0.25000.5314 (3)0.0313 (6)
C20.3579 (3)0.75000.9719 (3)0.0312 (6)
C30.9019 (4)0.25000.7977 (4)0.0357 (6)
N10.3940 (3)0.25000.5574 (3)0.0477 (8)
N20.6210 (4)0.25000.9165 (3)0.0500 (8)
N30.7909 (4)0.25000.7382 (4)0.0601 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03374 (7)0.05407 (10)0.03323 (8)0.0000.02060 (5)0.000
K10.0377 (3)0.0421 (4)0.0364 (3)0.0000.0177 (3)0.000
S10.0247 (3)0.0544 (5)0.0247 (3)0.0000.0094 (3)0.000
S20.0292 (3)0.0372 (4)0.0296 (3)0.0000.0147 (3)0.000
S30.0341 (4)0.1516 (14)0.0307 (4)0.0000.0188 (4)0.000
C10.0334 (14)0.0392 (16)0.0243 (12)0.0000.0150 (11)0.000
C20.0268 (12)0.0344 (15)0.0309 (14)0.0000.0107 (11)0.000
C30.0376 (15)0.0406 (17)0.0398 (16)0.0000.0269 (13)0.000
N10.0329 (14)0.075 (2)0.0379 (15)0.0000.0175 (12)0.000
N20.0529 (19)0.064 (2)0.0292 (14)0.0000.0134 (13)0.000
N30.0394 (17)0.096 (3)0.050 (2)0.0000.0248 (15)0.000
Geometric parameters (Å, º) top
Hg1—S32.3954 (11)K1—K1iii4.7485 (14)
Hg1—S12.4481 (8)S1—C11.675 (3)
Hg1—S22.7653 (6)S2—C21.664 (3)
Hg1—S2i2.7653 (6)S2—Hg1ii2.7653 (6)
K1—N2ii2.926 (2)S3—C3iv1.657 (4)
K1—N22.926 (2)C1—N11.140 (4)
K1—N3ii2.943 (3)C1—K1iii3.508 (3)
K1—N32.943 (3)C2—N2v1.145 (5)
K1—N12.993 (2)C3—N31.141 (6)
K1—N1ii2.993 (2)C3—S3vi1.657 (4)
K1—N1iii3.051 (3)N1—K1i2.993 (2)
K1—C1iii3.508 (3)N1—K1iii3.051 (3)
K1—S23.5657 (12)N2—C2v1.145 (5)
K1—K1i4.0775 (4)N2—K1i2.926 (2)
K1—K1ii4.0775 (4)N3—K1i2.943 (3)
S3—Hg1—S1154.06 (3)C1iii—K1—K1i90.0
S3—Hg1—S2102.74 (2)S2—K1—K1i90.0
S1—Hg1—S294.65 (2)N2ii—K1—K1ii45.83 (5)
S3—Hg1—S2i102.74 (2)N2—K1—K1ii134.17 (5)
S1—Hg1—S2i94.65 (2)N3ii—K1—K1ii46.15 (5)
S2—Hg1—S2i95.00 (2)N3—K1—K1ii133.85 (5)
N2ii—K1—N288.34 (9)N1—K1—K1ii132.94 (4)
N2ii—K1—N3ii67.60 (10)N1ii—K1—K1ii47.06 (4)
N2—K1—N3ii125.76 (10)N1iii—K1—K1ii90.0
N2ii—K1—N3125.76 (10)C1iii—K1—K1ii90.0
N2—K1—N367.60 (10)S2—K1—K1ii90.0
N3ii—K1—N387.70 (10)K1i—K1—K1ii180.00 (5)
N2ii—K1—N1136.39 (10)N2ii—K1—K1iii155.60 (6)
N2—K1—N176.98 (8)N2—K1—K1iii108.20 (5)
N3ii—K1—N1151.42 (11)N3ii—K1—K1iii112.78 (8)
N3—K1—N186.24 (8)N3—K1—K1iii78.02 (8)
N2ii—K1—N1ii76.98 (8)N1—K1—K1iii38.66 (6)
N2—K1—N1ii136.39 (10)N1ii—K1—K1iii78.70 (6)
N3ii—K1—N1ii86.24 (7)N1iii—K1—K1iii37.79 (4)
N3—K1—N1ii151.42 (11)C1iii—K1—K1iii52.26 (4)
N1—K1—N1ii85.87 (8)S2—K1—K1iii102.20 (3)
N2ii—K1—N1iii135.00 (5)K1i—K1—K1iii64.574 (8)
N2—K1—N1iii135.00 (5)K1ii—K1—K1iii115.426 (8)
N3ii—K1—N1iii75.01 (9)C1—S1—Hg197.08 (11)
N3—K1—N1iii75.01 (9)C2—S2—Hg198.38 (7)
N1—K1—N1iii76.45 (8)C2—S2—Hg1ii98.38 (7)
N1ii—K1—N1iii76.45 (8)Hg1—S2—Hg1ii95.00 (2)
N2ii—K1—C1iii129.27 (7)C2—S2—K1119.70 (11)
N2—K1—C1iii129.27 (7)Hg1—S2—K1120.06 (2)
N3ii—K1—C1iii62.76 (8)Hg1ii—S2—K1120.06 (2)
N3—K1—C1iii62.76 (8)C3iv—S3—Hg1101.12 (13)
N1—K1—C1iii89.79 (8)N1—C1—S1179.8 (3)
N1ii—K1—C1iii89.79 (8)N1—C1—K1iii57.5 (2)
N1iii—K1—C1iii18.38 (8)S1—C1—K1iii122.68 (14)
N2ii—K1—S267.14 (8)N2v—C2—S2179.7 (3)
N2—K1—S267.14 (8)N3—C3—S3vi176.4 (4)
N3ii—K1—S2132.15 (6)C1—N1—K1128.00 (14)
N3—K1—S2132.15 (6)C1—N1—K1i128.00 (14)
N1—K1—S269.32 (6)K1—N1—K1i85.87 (8)
N1ii—K1—S269.32 (6)C1—N1—K1iii104.1 (2)
N1iii—K1—S2132.49 (6)K1—N1—K1iii103.55 (8)
C1iii—K1—S2150.86 (6)K1i—N1—K1iii103.55 (8)
N2ii—K1—K1i134.17 (5)C2v—N2—K1i135.73 (5)
N2—K1—K1i45.83 (5)C2v—N2—K1135.73 (5)
N3ii—K1—K1i133.85 (5)K1i—N2—K188.34 (9)
N3—K1—K1i46.15 (5)C3—N3—K1i130.79 (15)
N1—K1—K1i47.06 (4)C3—N3—K1130.79 (15)
N1ii—K1—K1i132.94 (4)K1i—N3—K187.70 (10)
N1iii—K1—K1i90.0
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z+2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaK[Hg(NCS)3]
Mr413.93
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)11.2727 (11), 4.0775 (4), 10.9764 (10)
β (°) 114.951 (4)
V3)457.44 (8)
Z2
Radiation typeMo Kα
µ (mm1)17.90
Crystal size (mm)0.30 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.226, 0.504
No. of measured, independent and
observed [I > 2σ(I)] reflections
11940, 3765, 2358
Rint0.032
(sin θ/λ)max1)0.985
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.03
No. of reflections3765
No. of parameters68
Δρmax, Δρmin (e Å3)1.27, 1.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

First citationBowmaker, G. A., Churakov, A. V., Harris, R. K., Howard, J. A. K. & Apperley, D. C. (1998). Inorg. Chem. 37, 1734–1743.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationMüller, U. (2013). In Symmetry Relationships between Crystal Structures. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhdanov, G. S. & Sanadze, V. V. (1952). Zh. Fiz. Khim. 26, 469–478.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds