inorganic compounds
_{3}] – a redetermination
of K[Hg(SCN)^{a}Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164SC, A1060 Vienna, Austria
^{*}Correspondence email: mweil@mail.zserv.tuwien.ac.at
The _{3}], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952). Zh. Fiz. Khim. 26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the are located on mirror planes. The Hg^{2+} cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS_{4} polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting ^{1}_{∞}[HgS_{2/1}S_{2/2}] chains are also part of SCN^{−} anions that link these chains with the K^{+} cations into a threedimensional network. The K—N bond lengths of the distorted KN_{7} polyhedra lie between 2.926 (2) and 3.051 (3) Å.
of the roomtemperature modification of K[Hg(SCN)Keywords: crystal structure; redetermination; phase transition; mercury.
CCDC reference: 1006909
1. Related literature
K[Hg(SCN)_{3}] has been determined originally in the P2_{1}/m with Z = 8, based on roomtemperature data (Zhdanov & Sanadze, 1952). A subsequent redetermination revealed a doubled in P2_{1}/n, Z = 4, based on intensity data measured at 150 K (Bowmaker et al., 1998). However, there is no report on an apparent of K[Hg(SCN)_{3}] between these two temperatures. For symmetry relationships between crystal structures, see: Müller (2013).
2. Experimental
2.1. Crystal data

2.3. Refinement

Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1006909
10.1107/S1600536814013403/hb0013sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814013403/hb0013Isup2.hkl
Hg(SCN)_{2} (0.5 g) was dissolved under heating in a water–ethanol mixture (1:1 v/v) to which KSCN (0.1 g) was added. After one week, colourless crystals with a lathlike form were obtained from the remaining solution.
For better comparison with the previous determination by Zhdanov & Sanadze (1952), the original nonreduced cell setting as well as the atom labelling and the atomic coordinates were used as starting parameters for the refinement.
Bowmaker et al. (1998) reported a doubled β = 91.852 (1)°, P2_{1}/n, Z = 4. However, no reflections were found in the current redetermination at 293 K, while Bowmaker et al. (1998) used intensity data measured at 150 K. Therefore it appears likely that K[Hg(SCN)_{3}] has a between these two temperatures. The two unit cells of the roomtemperature phase in P2_{1}/m and the lowtemperature phase in P2_{1}/n are related by the matix (101,010,101), revealing a klassengleiche symmetry reduction of index 2 (Müller, 2013).
for K[Hg(SCN)_{3}] with a = 11.9119 (3), b = 4.0201 (1), c = 18.7095 (3) Å,The highest and lowest electron densities are found 0.66 and 0.28 Å, respectively, from atom S3.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).K[Hg(NCS)_{3}]  F(000) = 372 
M_{r} = 413.93  D_{x} = 3.005 Mg m^{−}^{3} 
Monoclinic, P2_{1}/m  Mo Kα radiation, λ = 0.71073 Å 
Hall symbol: P 2yb  Cell parameters from 4570 reflections 
a = 11.2727 (11) Å  θ = 3.4–33.7° 
b = 4.0775 (4) Å  µ = 17.90 mm^{−}^{1} 
c = 10.9764 (10) Å  T = 293 K 
β = 114.951 (4)°  Lath, colourless 
V = 457.44 (8) Å^{3}  0.30 × 0.06 × 0.04 mm 
Z = 2 
Bruker APEXII CCD diffractometer  3765 independent reflections 
Radiation source: finefocus sealed tube  2358 reflections with I > 2σ(I) 
Graphite monochromator  R_{int} = 0.032 
ω and ϕ scans  θ_{max} = 44.4°, θ_{min} = 3.4° 
Absorption correction: multiscan (SADABS; Bruker, 2008)  h = −19→22 
T_{min} = 0.226, T_{max} = 0.504  k = −7→7 
11940 measured reflections  l = −21→18 
Refinement on F^{2}  Primary atom site location: isomorphous structure methods 
Leastsquares matrix: full  w = 1/[σ^{2}(F_{o}^{2}) + (0.0218P)^{2} + 0.0583P] where P = (F_{o}^{2} + 2F_{c}^{2})/3 
R[F^{2} > 2σ(F^{2})] = 0.028  (Δ/σ)_{max} = 0.001 
wR(F^{2}) = 0.062  Δρ_{max} = 1.27 e Å^{−}^{3} 
S = 1.03  Δρ_{min} = −1.33 e Å^{−}^{3} 
3765 reflections  Extinction correction: SHELXL97 (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc^{2}λ^{3}/sin(2θ)]^{1/4} 
68 parameters  Extinction coefficient: 0.0219 (8) 
0 restraints 
K[Hg(NCS)_{3}]  V = 457.44 (8) Å^{3} 
M_{r} = 413.93  Z = 2 
Monoclinic, P2_{1}/m  Mo Kα radiation 
a = 11.2727 (11) Å  µ = 17.90 mm^{−}^{1} 
b = 4.0775 (4) Å  T = 293 K 
c = 10.9764 (10) Å  0.30 × 0.06 × 0.04 mm 
β = 114.951 (4)° 
Bruker APEXII CCD diffractometer  3765 independent reflections 
Absorption correction: multiscan (SADABS; Bruker, 2008)  2358 reflections with I > 2σ(I) 
T_{min} = 0.226, T_{max} = 0.504  R_{int} = 0.032 
11940 measured reflections 
R[F^{2} > 2σ(F^{2})] = 0.028  68 parameters 
wR(F^{2}) = 0.062  0 restraints 
S = 1.03  Δρ_{max} = 1.27 e Å^{−}^{3} 
3765 reflections  Δρ_{min} = −1.33 e Å^{−}^{3} 
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. 
Refinement. Refinement of F^{2} against ALL reflections. The weighted Rfactor wR and goodness of fit S are based on F^{2}, conventional Rfactors R are based on F, with F set to zero for negative F^{2}. The threshold expression of F^{2} > σ(F^{2}) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. Rfactors based on F^{2} are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger. 
x  y  z  U_{iso}*/U_{eq}  
Hg1  0.145383 (12)  0.2500  0.725128 (12)  0.03813 (6)  
K1  0.59433 (8)  0.7500  0.71536 (7)  0.03802 (15)  
S1  0.12455 (7)  0.2500  0.49391 (8)  0.03495 (17)  
S2  0.32808 (7)  0.7500  0.80993 (8)  0.03121 (14)  
S3  0.06157 (10)  0.2500  0.89262 (10)  0.0704 (4)  
C1  0.2848 (3)  0.2500  0.5314 (3)  0.0313 (6)  
C2  0.3579 (3)  0.7500  0.9719 (3)  0.0312 (6)  
C3  0.9019 (4)  0.2500  0.7977 (4)  0.0357 (6)  
N1  0.3940 (3)  0.2500  0.5574 (3)  0.0477 (8)  
N2  0.6210 (4)  0.2500  0.9165 (3)  0.0500 (8)  
N3  0.7909 (4)  0.2500  0.7382 (4)  0.0601 (10) 
U^{11}  U^{22}  U^{33}  U^{12}  U^{13}  U^{23}  
Hg1  0.03374 (7)  0.05407 (10)  0.03323 (8)  0.000  0.02060 (5)  0.000 
K1  0.0377 (3)  0.0421 (4)  0.0364 (3)  0.000  0.0177 (3)  0.000 
S1  0.0247 (3)  0.0544 (5)  0.0247 (3)  0.000  0.0094 (3)  0.000 
S2  0.0292 (3)  0.0372 (4)  0.0296 (3)  0.000  0.0147 (3)  0.000 
S3  0.0341 (4)  0.1516 (14)  0.0307 (4)  0.000  0.0188 (4)  0.000 
C1  0.0334 (14)  0.0392 (16)  0.0243 (12)  0.000  0.0150 (11)  0.000 
C2  0.0268 (12)  0.0344 (15)  0.0309 (14)  0.000  0.0107 (11)  0.000 
C3  0.0376 (15)  0.0406 (17)  0.0398 (16)  0.000  0.0269 (13)  0.000 
N1  0.0329 (14)  0.075 (2)  0.0379 (15)  0.000  0.0175 (12)  0.000 
N2  0.0529 (19)  0.064 (2)  0.0292 (14)  0.000  0.0134 (13)  0.000 
N3  0.0394 (17)  0.096 (3)  0.050 (2)  0.000  0.0248 (15)  0.000 
Hg1—S3  2.3954 (11)  K1—K1^{iii}  4.7485 (14) 
Hg1—S1  2.4481 (8)  S1—C1  1.675 (3) 
Hg1—S2  2.7653 (6)  S2—C2  1.664 (3) 
Hg1—S2^{i}  2.7653 (6)  S2—Hg1^{ii}  2.7653 (6) 
K1—N2^{ii}  2.926 (2)  S3—C3^{iv}  1.657 (4) 
K1—N2  2.926 (2)  C1—N1  1.140 (4) 
K1—N3^{ii}  2.943 (3)  C1—K1^{iii}  3.508 (3) 
K1—N3  2.943 (3)  C2—N2^{v}  1.145 (5) 
K1—N1  2.993 (2)  C3—N3  1.141 (6) 
K1—N1^{ii}  2.993 (2)  C3—S3^{vi}  1.657 (4) 
K1—N1^{iii}  3.051 (3)  N1—K1^{i}  2.993 (2) 
K1—C1^{iii}  3.508 (3)  N1—K1^{iii}  3.051 (3) 
K1—S2  3.5657 (12)  N2—C2^{v}  1.145 (5) 
K1—K1^{i}  4.0775 (4)  N2—K1^{i}  2.926 (2) 
K1—K1^{ii}  4.0775 (4)  N3—K1^{i}  2.943 (3) 
S3—Hg1—S1  154.06 (3)  C1^{iii}—K1—K1^{i}  90.0 
S3—Hg1—S2  102.74 (2)  S2—K1—K1^{i}  90.0 
S1—Hg1—S2  94.65 (2)  N2^{ii}—K1—K1^{ii}  45.83 (5) 
S3—Hg1—S2^{i}  102.74 (2)  N2—K1—K1^{ii}  134.17 (5) 
S1—Hg1—S2^{i}  94.65 (2)  N3^{ii}—K1—K1^{ii}  46.15 (5) 
S2—Hg1—S2^{i}  95.00 (2)  N3—K1—K1^{ii}  133.85 (5) 
N2^{ii}—K1—N2  88.34 (9)  N1—K1—K1^{ii}  132.94 (4) 
N2^{ii}—K1—N3^{ii}  67.60 (10)  N1^{ii}—K1—K1^{ii}  47.06 (4) 
N2—K1—N3^{ii}  125.76 (10)  N1^{iii}—K1—K1^{ii}  90.0 
N2^{ii}—K1—N3  125.76 (10)  C1^{iii}—K1—K1^{ii}  90.0 
N2—K1—N3  67.60 (10)  S2—K1—K1^{ii}  90.0 
N3^{ii}—K1—N3  87.70 (10)  K1^{i}—K1—K1^{ii}  180.00 (5) 
N2^{ii}—K1—N1  136.39 (10)  N2^{ii}—K1—K1^{iii}  155.60 (6) 
N2—K1—N1  76.98 (8)  N2—K1—K1^{iii}  108.20 (5) 
N3^{ii}—K1—N1  151.42 (11)  N3^{ii}—K1—K1^{iii}  112.78 (8) 
N3—K1—N1  86.24 (8)  N3—K1—K1^{iii}  78.02 (8) 
N2^{ii}—K1—N1^{ii}  76.98 (8)  N1—K1—K1^{iii}  38.66 (6) 
N2—K1—N1^{ii}  136.39 (10)  N1^{ii}—K1—K1^{iii}  78.70 (6) 
N3^{ii}—K1—N1^{ii}  86.24 (7)  N1^{iii}—K1—K1^{iii}  37.79 (4) 
N3—K1—N1^{ii}  151.42 (11)  C1^{iii}—K1—K1^{iii}  52.26 (4) 
N1—K1—N1^{ii}  85.87 (8)  S2—K1—K1^{iii}  102.20 (3) 
N2^{ii}—K1—N1^{iii}  135.00 (5)  K1^{i}—K1—K1^{iii}  64.574 (8) 
N2—K1—N1^{iii}  135.00 (5)  K1^{ii}—K1—K1^{iii}  115.426 (8) 
N3^{ii}—K1—N1^{iii}  75.01 (9)  C1—S1—Hg1  97.08 (11) 
N3—K1—N1^{iii}  75.01 (9)  C2—S2—Hg1  98.38 (7) 
N1—K1—N1^{iii}  76.45 (8)  C2—S2—Hg1^{ii}  98.38 (7) 
N1^{ii}—K1—N1^{iii}  76.45 (8)  Hg1—S2—Hg1^{ii}  95.00 (2) 
N2^{ii}—K1—C1^{iii}  129.27 (7)  C2—S2—K1  119.70 (11) 
N2—K1—C1^{iii}  129.27 (7)  Hg1—S2—K1  120.06 (2) 
N3^{ii}—K1—C1^{iii}  62.76 (8)  Hg1^{ii}—S2—K1  120.06 (2) 
N3—K1—C1^{iii}  62.76 (8)  C3^{iv}—S3—Hg1  101.12 (13) 
N1—K1—C1^{iii}  89.79 (8)  N1—C1—S1  179.8 (3) 
N1^{ii}—K1—C1^{iii}  89.79 (8)  N1—C1—K1^{iii}  57.5 (2) 
N1^{iii}—K1—C1^{iii}  18.38 (8)  S1—C1—K1^{iii}  122.68 (14) 
N2^{ii}—K1—S2  67.14 (8)  N2^{v}—C2—S2  179.7 (3) 
N2—K1—S2  67.14 (8)  N3—C3—S3^{vi}  176.4 (4) 
N3^{ii}—K1—S2  132.15 (6)  C1—N1—K1  128.00 (14) 
N3—K1—S2  132.15 (6)  C1—N1—K1^{i}  128.00 (14) 
N1—K1—S2  69.32 (6)  K1—N1—K1^{i}  85.87 (8) 
N1^{ii}—K1—S2  69.32 (6)  C1—N1—K1^{iii}  104.1 (2) 
N1^{iii}—K1—S2  132.49 (6)  K1—N1—K1^{iii}  103.55 (8) 
C1^{iii}—K1—S2  150.86 (6)  K1^{i}—N1—K1^{iii}  103.55 (8) 
N2^{ii}—K1—K1^{i}  134.17 (5)  C2^{v}—N2—K1^{i}  135.73 (5) 
N2—K1—K1^{i}  45.83 (5)  C2^{v}—N2—K1  135.73 (5) 
N3^{ii}—K1—K1^{i}  133.85 (5)  K1^{i}—N2—K1  88.34 (9) 
N3—K1—K1^{i}  46.15 (5)  C3—N3—K1^{i}  130.79 (15) 
N1—K1—K1^{i}  47.06 (4)  C3—N3—K1  130.79 (15) 
N1^{ii}—K1—K1^{i}  132.94 (4)  K1^{i}—N3—K1  87.70 (10) 
N1^{iii}—K1—K1^{i}  90.0 
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y+1, −z+2; (vi) x+1, y, z. 
Experimental details
Crystal data  
Chemical formula  K[Hg(NCS)_{3}] 
M_{r}  413.93 
Crystal system, space group  Monoclinic, P2_{1}/m 
Temperature (K)  293 
a, b, c (Å)  11.2727 (11), 4.0775 (4), 10.9764 (10) 
β (°)  114.951 (4) 
V (Å^{3})  457.44 (8) 
Z  2 
Radiation type  Mo Kα 
µ (mm^{−}^{1})  17.90 
Crystal size (mm)  0.30 × 0.06 × 0.04 
Data collection  
Diffractometer  Bruker APEXII CCD diffractometer 
Absorption correction  Multiscan (SADABS; Bruker, 2008) 
T_{min}, T_{max}  0.226, 0.504 
No. of measured, independent and observed [I > 2σ(I)] reflections  11940, 3765, 2358 
R_{int}  0.032 
(sin θ/λ)_{max} (Å^{−}^{1})  0.985 
Refinement  
R[F^{2} > 2σ(F^{2})], wR(F^{2}), S  0.028, 0.062, 1.03 
No. of reflections  3765 
No. of parameters  68 
Δρ_{max}, Δρ_{min} (e Å^{−}^{3})  1.27, −1.33 
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006), publCIF (Westrip, 2010).
Acknowledgements
The Xray centre of the Vienna University of Technology is acknowledged for providing access to the singlecrystal diffractometer.
References
Bowmaker, G. A., Churakov, A. V., Harris, R. K., Howard, J. A. K. & Apperley, D. C. (1998). Inorg. Chem. 37, 1734–1743. Web of Science CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Müller, U. (2013). In Symmetry Relationships between Crystal Structures. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhdanov, G. S. & Sanadze, V. V. (1952). Zh. Fiz. Khim. 26, 469–478. CAS Google Scholar
This is an openaccess article distributed under the terms of the Creative Commons Attribution (CCBY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.