organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o911-o912

Crystal structure of N1-benzyl-N1,N2,N2-tri­methyl­ethane-1,2-diaminium dichloride

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 June 2014; accepted 7 July 2014; online 1 August 2014)

In the title mol­ecular salt, C12H22N22+·2Cl, which was obtained as a by-product in the attempted synthesis of a mercury derivative, the conformation of the N—C—C—N bond in the cation is anti [torsion angle = 175.1 (10)°]. In the crystal, the cations are linked to the anions by N—H⋯Cl hydrogen bonds, generating ion-triplets. These are linked by numerous weak C—H⋯Cl inter­actions, generating a three-dimensional network. The structure was refined as an inversion twin.

1. Related literature

For further synthetic details, see: Rietveld et al. (1994[Rietveld, M. H. P. W., -Ooyevaar, I. C. M., Kapteijn, G. M., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 3782-3787.]). For the application of the parent di­amine as a precursor of anti-histamine derivatives for therapeutic use, see: Gardner & Stevens (1949[Gardner, J. H. & Stevens, J. R. (1949). J. Am. Chem. Soc. 71, 1868-1870.]); Fox & Wenner (1951[Fox, H. H. & Wenner, W. (1951). J. Org. Chem. 16, 225-231.]); For a related structure, see: Manjare et al. (2014[Manjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118-120.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H22N22+·2Cl

  • Mr = 265.21

  • Monoclinic, P 21

  • a = 5.6744 (7) Å

  • b = 22.384 (3) Å

  • c = 5.9991 (7) Å

  • β = 105.372 (12)°

  • V = 734.72 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.79 mm−1

  • T = 123 K

  • 0.49 × 0.16 × 0.13 mm

2.2. Data collection

  • Agilent Xcalibur, Ruby, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.273, Tmax = 1.000

  • 2002 measured reflections

  • 1986 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.000

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.229

  • S = 1.13

  • 1986 reflections

  • 149 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.62 e Å−3

  • Refined as an inversion twin

  • Absolute structure parameter: 0.25 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 1.00 2.11 3.107 (8) 179
N2—H2B⋯Cl2 1.00 2.18 3.148 (11) 163
C7—H7B⋯Cl1i 0.99 2.92 3.749 (13) 142
C8—H8A⋯Cl2ii 0.98 2.93 3.893 (10) 168
C8—H8B⋯Cl1i 0.98 2.79 3.690 (11) 154
C8—H8C⋯Cl1iii 0.98 2.88 3.486 (12) 121
C9—H9A⋯Cl1iv 0.99 2.74 3.711 (12) 168
C10—H10A⋯Cl1 0.99 2.98 3.682 (11) 129
C10—H10B⋯Cl2ii 0.99 2.78 3.750 (13) 168
C11—H11B⋯Cl1iv 0.98 2.89 3.831 (17) 161
C12—H12B⋯Cl2ii 0.98 2.89 3.842 (15) 166
C12—H12C⋯Cl2v 0.98 2.88 3.747 (13) 147
Symmetry codes: (i) x-1, y, z-1; (ii) x+1, y, z; (iii) x, y, z-1; (iv) x-1, y, z; (v) x+1, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Experimental top

The starting material, o-di­amine-substituted aryl bromide, N1-(2-bromo­benzyl)-N1,N2,N2-tri­methyl­ethane-1,2-di­amine, can be prepared by the reaction of N1,N1,N2-tri­methyl­ethane-1,2-di­amine and ortho-bromo­benzyl­bromide (Rietveld et al., 1994). This ligand is moisture sensitive and is difficult to purify by column chromatography. However, it could be easily purified by vacuum distillation. The moisture sensitive ligand when treated with n-BuLi in THF produced the li­thia­ted product (2) which when treated with AlCl3 afforded the title salt.

A stirred solution of N1-(2-bromo­benzyl)-N1,N2,N2-tri­methyl­ethane-1,2-di­amine (1.10 ml, 5.34 mmol) in dry THF (15 ml) was treated dropwise with a 1.6 M solution of n-BuLi in hexane (3.80 ml, 6.15 mmol) via syringe under N2 at 0°C. On stirring the reaction mixture for 2 h at this temperature the li­thia­ted product (2) was obtained. To a freshly prepared 2 (1.10 ml, 5.34 mmol) in dry THF (15 ml) was added anhydrous aluminum trichloride (0.75 g, 5.70 mmol) under a brisk flow of N2 gas and stirring was continued for an additional 6 h at room temperature. The reaction mixture was then removed from the N2 line and evaporated to dryness to give a colourless hygroscopic solid. The solid was extracted with dry ether. The organic phase was separated, dried over Na2SO4, and filtered. The filtrate was evaporated to dryness to give a colourless crystalline solid of the title salt (0.48, 34% yield). 1H NMR (CDCl3) δ 2.72 (s, NMe2), 2.38 (s, NMe), 2.95 (t, 2H), 3.13 (3, 2H), 3.65 (s, CH2), 5.48 (s, br 2NH), 7.31-7.39 (m, 5H-aryl); 13C NMR (DMSO-d6) δ 41.52, 43.40, 51.86, 54.32, 61.69, 67. 34, 127.50, 128.51, 129.43, 138.18.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å and an N—H distance of 1.00 Uiso(H) = 1.2Ueq(C, N) and 0.98 Å for CH3 [Uiso(H)= 1.5Ueq(C)]

Related literature top

For further synthetic details, see: Rietveld et al. (1994). For the application of the parent diamine as a precursor of anti-histamine derivatives for therapeutic use, see: Gardner & Stevens (1949); Fox & Wenner (1951); For a related structure, see: Manjare et al. (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of C12H22N2.2Cl showing 30% probability displacement ellipsoids and the N—H···Cl hydrogen bonds (shown as dashed lines).
[Figure 2] Fig. 2. The packing for C12H22N2.2Cl viewed along the b axis showing the linking of the cations and anions into a three-dimensional array by an extensive network of C—H···Cl interactions (shown as dashed bonds).
N1-Benzyl-N1,N2,N2-trimethylethane-1,2-diaminium dichloride top
Crystal data top
C12H22N22+·2ClF(000) = 284
Mr = 265.21Dx = 1.199 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.6744 (7) ÅCell parameters from 1555 reflections
b = 22.384 (3) Åθ = 4.0–76.4°
c = 5.9991 (7) ŵ = 3.79 mm1
β = 105.372 (12)°T = 123 K
V = 734.72 (16) Å3Needle, colorless
Z = 20.49 × 0.16 × 0.13 mm
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
1961 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.000
ω scansθmax = 76.6°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 76
Tmin = 0.273, Tmax = 1.000k = 2721
2002 measured reflectionsl = 07
1986 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.229 w = 1/[σ2(Fo2) + (0.1591P)2 + 1.0863P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1986 reflectionsΔρmax = 1.15 e Å3
149 parametersΔρmin = 0.62 e Å3
7 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (7)
Crystal data top
C12H22N22+·2ClV = 734.72 (16) Å3
Mr = 265.21Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.6744 (7) ŵ = 3.79 mm1
b = 22.384 (3) ÅT = 123 K
c = 5.9991 (7) Å0.49 × 0.16 × 0.13 mm
β = 105.372 (12)°
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
1986 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1961 reflections with I > 2σ(I)
Tmin = 0.273, Tmax = 1.000Rint = 0.000
2002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.229Δρmax = 1.15 e Å3
S = 1.13Δρmin = 0.62 e Å3
1986 reflectionsAbsolute structure: Refined as an inversion twin.
149 parametersAbsolute structure parameter: 0.25 (7)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5443 (3)0.30227 (7)1.3350 (2)0.0313 (4)
Cl20.5635 (2)0.48206 (5)0.67629 (19)0.0219 (3)
N10.0818 (16)0.3087 (4)0.9195 (14)0.052 (2)
H1A0.22960.30601.05400.063*
N20.0884 (18)0.4633 (5)1.083 (2)0.061 (2)
H2B0.22250.46400.93630.074*
C10.092 (2)0.1998 (6)0.814 (2)0.065 (3)
C20.012 (3)0.1787 (6)0.583 (2)0.078 (4)
H2A0.16560.19190.49030.094*
C30.141 (3)0.1344 (6)0.500 (2)0.075 (3)
H3A0.08180.11800.34930.090*
C40.359 (3)0.1172 (6)0.629 (3)0.092 (4)
H4A0.45630.09070.56700.110*
C50.446 (3)0.1374 (7)0.855 (3)0.094 (5)
H5A0.60030.12390.94580.113*
C60.310 (2)0.1772 (6)0.950 (2)0.074 (3)
H6A0.36620.18871.10750.088*
C70.044 (3)0.2487 (6)0.896 (2)0.067 (3)
H7A0.06770.23721.04790.080*
H7B0.20770.25250.78610.080*
C80.171 (2)0.3228 (4)0.7060 (17)0.050 (2)
H8A0.24880.36220.72390.074*
H8B0.03180.32270.56830.074*
H8C0.28960.29250.68900.074*
C90.065 (2)0.3554 (5)0.967 (2)0.057 (3)
H9A0.14540.34161.08620.069*
H9B0.19550.36460.82530.069*
C100.079 (2)0.4127 (6)1.0534 (19)0.058 (3)
H10A0.19970.40471.20310.069*
H10B0.17060.42490.94110.069*
C110.205 (3)0.4576 (7)1.257 (3)0.075 (4)
H11A0.08330.45791.40770.113*
H11B0.29580.41981.23830.113*
H11C0.31860.49101.24940.113*
C120.045 (3)0.5223 (6)1.088 (2)0.066 (3)
H12A0.07410.55461.03810.099*
H12B0.15170.52020.98380.099*
H12C0.14410.53041.24590.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0262 (7)0.0399 (11)0.0259 (7)0.0014 (7)0.0034 (6)0.0010 (6)
Cl20.0176 (6)0.0285 (7)0.0176 (6)0.0026 (6)0.0012 (4)0.0048 (5)
N10.049 (4)0.063 (5)0.038 (4)0.010 (4)0.001 (3)0.007 (4)
N20.044 (4)0.060 (6)0.084 (6)0.002 (4)0.024 (4)0.005 (4)
C10.065 (6)0.067 (7)0.067 (6)0.001 (5)0.026 (5)0.006 (5)
C20.082 (9)0.080 (8)0.065 (7)0.004 (7)0.007 (6)0.004 (6)
C30.091 (8)0.053 (6)0.081 (7)0.008 (7)0.023 (6)0.012 (6)
C40.107 (10)0.045 (6)0.143 (13)0.000 (7)0.067 (9)0.017 (7)
C50.084 (9)0.055 (6)0.130 (12)0.005 (8)0.006 (8)0.012 (9)
C60.067 (7)0.083 (9)0.071 (7)0.003 (6)0.019 (6)0.002 (6)
C70.076 (7)0.070 (7)0.060 (6)0.003 (6)0.025 (5)0.002 (5)
C80.060 (6)0.049 (6)0.034 (4)0.005 (4)0.002 (4)0.002 (3)
C90.050 (5)0.063 (6)0.060 (6)0.006 (5)0.016 (5)0.003 (5)
C100.050 (5)0.065 (6)0.049 (5)0.007 (5)0.004 (4)0.009 (4)
C110.056 (6)0.086 (8)0.078 (7)0.009 (6)0.007 (6)0.018 (6)
C120.061 (6)0.068 (7)0.063 (7)0.011 (6)0.006 (5)0.006 (5)
Geometric parameters (Å, º) top
N1—C91.413 (15)C5—H5A0.9500
N1—C71.511 (17)C6—H6A0.9500
N1—C81.530 (14)C7—H7A0.9900
N1—H1A1.0000C7—H7B0.9900
N2—C111.38 (2)C8—H8A0.9800
N2—C101.520 (16)C8—H8B0.9800
N2—C121.521 (17)C8—H8C0.9800
N2—H2B1.0000C9—C101.538 (16)
C1—C61.382 (18)C9—H9A0.9900
C1—C21.435 (18)C9—H9B0.9900
C1—C71.497 (18)C10—H10A0.9900
C2—C31.49 (2)C10—H10B0.9900
C2—H2A0.9500C11—H11A0.9800
C3—C41.33 (2)C11—H11B0.9800
C3—H3A0.9500C11—H11C0.9800
C4—C51.39 (2)C12—H12A0.9800
C4—H4A0.9500C12—H12B0.9800
C5—C61.40 (2)C12—H12C0.9800
C9—N1—C7112.7 (9)C1—C7—H7B108.7
C9—N1—C8111.3 (9)N1—C7—H7B108.7
C7—N1—C8111.0 (8)H7A—C7—H7B107.6
C9—N1—H1A107.2N1—C8—H8A109.5
C7—N1—H1A107.2N1—C8—H8B109.5
C8—N1—H1A107.2H8A—C8—H8B109.5
C11—N2—C10117.4 (11)N1—C8—H8C109.5
C11—N2—C12113.6 (11)H8A—C8—H8C109.5
C10—N2—C12109.0 (9)H8B—C8—H8C109.5
C11—N2—H2B105.2N1—C9—C10113.1 (9)
C10—N2—H2B105.2N1—C9—H9A109.0
C12—N2—H2B105.2C10—C9—H9A109.0
C6—C1—C2121.6 (13)N1—C9—H9B109.0
C6—C1—C7122.1 (12)C10—C9—H9B109.0
C2—C1—C7116.3 (12)H9A—C9—H9B107.8
C1—C2—C3114.6 (13)N2—C10—C9111.4 (9)
C1—C2—H2A122.7N2—C10—H10A109.3
C3—C2—H2A122.7C9—C10—H10A109.3
C4—C3—C2122.1 (13)N2—C10—H10B109.3
C4—C3—H3A118.9C9—C10—H10B109.3
C2—C3—H3A118.9H10A—C10—H10B108.0
C3—C4—C5120.6 (15)N2—C11—H11A109.5
C3—C4—H4A119.7N2—C11—H11B109.5
C5—C4—H4A119.7H11A—C11—H11B109.5
C4—C5—C6121.0 (14)N2—C11—H11C109.5
C4—C5—H5A119.5H11A—C11—H11C109.5
C6—C5—H5A119.5H11B—C11—H11C109.5
C1—C6—C5119.7 (13)N2—C12—H12A109.5
C1—C6—H6A120.1N2—C12—H12B109.5
C5—C6—H6A120.1H12A—C12—H12B109.5
C1—C7—N1114.2 (11)N2—C12—H12C109.5
C1—C7—H7A108.7H12A—C12—H12C109.5
N1—C7—H7A108.7H12B—C12—H12C109.5
C6—C1—C2—C34 (2)C2—C1—C7—N1108.9 (14)
C7—C1—C2—C3174.3 (12)C9—N1—C7—C1172.2 (10)
C1—C2—C3—C41 (2)C8—N1—C7—C146.6 (13)
C2—C3—C4—C54 (2)C7—N1—C9—C10165.1 (9)
C3—C4—C5—C61 (3)C8—N1—C9—C1069.5 (11)
C2—C1—C6—C57 (2)C11—N2—C10—C967.8 (13)
C7—C1—C6—C5171.5 (14)C12—N2—C10—C9161.2 (10)
C4—C5—C6—C14 (2)N1—C9—C10—N2175.1 (10)
C6—C1—C7—N169.3 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl11.002.113.107 (8)179
N2—H2B···Cl21.002.183.148 (11)163
C7—H7B···Cl1i0.992.923.749 (13)142
C8—H8A···Cl2ii0.982.933.893 (10)168
C8—H8B···Cl1i0.982.793.690 (11)154
C8—H8C···Cl1iii0.982.883.486 (12)121
C9—H9A···Cl1iv0.992.743.711 (12)168
C10—H10A···Cl10.992.983.682 (11)129
C10—H10B···Cl2ii0.992.783.750 (13)168
C11—H11B···Cl1iv0.982.893.831 (17)161
C12—H12B···Cl2ii0.982.893.842 (15)166
C12—H12C···Cl2v0.982.883.747 (13)147
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl11.002.113.107 (8)179
N2—H2B···Cl21.002.183.148 (11)163
C7—H7B···Cl1i0.992.923.749 (13)142
C8—H8A···Cl2ii0.982.933.893 (10)168
C8—H8B···Cl1i0.982.793.690 (11)154
C8—H8C···Cl1iii0.982.883.486 (12)121
C9—H9A···Cl1iv0.992.743.711 (12)168
C10—H10A···Cl10.992.983.682 (11)129
C10—H10B···Cl2ii0.992.783.750 (13)168
C11—H11B···Cl1iv0.982.893.831 (17)161
C12—H12B···Cl2ii0.982.893.842 (15)166
C12—H12C···Cl2v0.982.883.747 (13)147
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFox, H. H. & Wenner, W. (1951). J. Org. Chem. 16, 225–231.  CrossRef CAS Web of Science Google Scholar
First citationGardner, J. H. & Stevens, J. R. (1949). J. Am. Chem. Soc. 71, 1868–1870.  CrossRef CAS Web of Science Google Scholar
First citationManjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118–120.  CSD CrossRef IUCr Journals Google Scholar
First citationRietveld, M. H. P. W., -Ooyevaar, I. C. M., Kapteijn, G. M., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 3782–3787.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o911-o912
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds