organic compounds
N1-benzyl-N1,N2,N2-trimethylethane-1,2-diaminium dichloride
ofaDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title molecular salt, C12H22N22+·2Cl−, which was obtained as a by-product in the attempted synthesis of a mercury derivative, the conformation of the N—C—C—N bond in the cation is anti [torsion angle = 175.1 (10)°]. In the crystal, the cations are linked to the anions by N—H⋯Cl hydrogen bonds, generating ion-triplets. These are linked by numerous weak C—H⋯Cl interactions, generating a three-dimensional network. The structure was refined as an inversion twin.
CCDC reference: 1012363
1. Related literature
For further synthetic details, see: Rietveld et al. (1994). For the application of the parent diamine as a precursor of anti-histamine derivatives for therapeutic use, see: Gardner & Stevens (1949); Fox & Wenner (1951); For a related structure, see: Manjare et al. (2014).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1012363
10.1107/S1600536814015797/hb7244sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814015797/hb7244Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814015797/hb7244Isup3.cml
The starting material, o-diamine-substituted aryl bromide, N1-(2-bromobenzyl)-N1,N2,N2-trimethylethane-1,2-diamine, can be prepared by the reaction of N1,N1,N2-trimethylethane-1,2-diamine and ortho-bromobenzylbromide (Rietveld et al., 1994). This ligand is moisture sensitive and is difficult to purify by
However, it could be easily purified by vacuum distillation. The moisture sensitive ligand when treated with n-BuLi in THF produced the lithiated product (2) which when treated with AlCl3 afforded the title salt.A stirred solution of N1-(2-bromobenzyl)-N1,N2,N2-trimethylethane-1,2-diamine (1.10 ml, 5.34 mmol) in dry THF (15 ml) was treated dropwise with a 1.6 M solution of n-BuLi in hexane (3.80 ml, 6.15 mmol) via syringe under N2 at 0°C. On stirring the reaction mixture for 2 h at this temperature the lithiated product (2) was obtained. To a freshly prepared 2 (1.10 ml, 5.34 mmol) in dry THF (15 ml) was added anhydrous aluminum trichloride (0.75 g, 5.70 mmol) under a brisk flow of N2 gas and stirring was continued for an additional 6 h at room temperature. The reaction mixture was then removed from the N2 line and evaporated to dryness to give a colourless hygroscopic solid. The solid was extracted with dry ether. The organic phase was separated, dried over Na2SO4, and filtered. The filtrate was evaporated to dryness to give a colourless crystalline solid of the title salt (0.48, 34% yield). 1H NMR (CDCl3) δ 2.72 (s, NMe2), 2.38 (s, NMe), 2.95 (t, 2H), 3.13 (3, 2H), 3.65 (s, CH2), 5.48 (s, br 2NH), 7.31-7.39 (m, 5H-aryl); 13C NMR (DMSO-d6) δ 41.52, 43.40, 51.86, 54.32, 61.69, 67. 34, 127.50, 128.51, 129.43, 138.18.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of C12H22N2.2Cl showing 30% probability displacement ellipsoids and the N—H···Cl hydrogen bonds (shown as dashed lines). | |
Fig. 2. The packing for C12H22N2.2Cl viewed along the b axis showing the linking of the cations and anions into a three-dimensional array by an extensive network of C—H···Cl interactions (shown as dashed bonds). |
C12H22N22+·2Cl− | F(000) = 284 |
Mr = 265.21 | Dx = 1.199 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.6744 (7) Å | Cell parameters from 1555 reflections |
b = 22.384 (3) Å | θ = 4.0–76.4° |
c = 5.9991 (7) Å | µ = 3.79 mm−1 |
β = 105.372 (12)° | T = 123 K |
V = 734.72 (16) Å3 | Needle, colorless |
Z = 2 | 0.49 × 0.16 × 0.13 mm |
Agilent Xcalibur, Ruby, Gemini diffractometer | 1961 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.000 |
ω scans | θmax = 76.6°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −7→6 |
Tmin = 0.273, Tmax = 1.000 | k = −27→21 |
2002 measured reflections | l = 0→7 |
1986 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.082 | H-atom parameters constrained |
wR(F2) = 0.229 | w = 1/[σ2(Fo2) + (0.1591P)2 + 1.0863P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
1986 reflections | Δρmax = 1.15 e Å−3 |
149 parameters | Δρmin = −0.62 e Å−3 |
7 restraints | Absolute structure: Refined as an inversion twin. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.25 (7) |
C12H22N22+·2Cl− | V = 734.72 (16) Å3 |
Mr = 265.21 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.6744 (7) Å | µ = 3.79 mm−1 |
b = 22.384 (3) Å | T = 123 K |
c = 5.9991 (7) Å | 0.49 × 0.16 × 0.13 mm |
β = 105.372 (12)° |
Agilent Xcalibur, Ruby, Gemini diffractometer | 1986 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1961 reflections with I > 2σ(I) |
Tmin = 0.273, Tmax = 1.000 | Rint = 0.000 |
2002 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | H-atom parameters constrained |
wR(F2) = 0.229 | Δρmax = 1.15 e Å−3 |
S = 1.13 | Δρmin = −0.62 e Å−3 |
1986 reflections | Absolute structure: Refined as an inversion twin. |
149 parameters | Absolute structure parameter: 0.25 (7) |
7 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.5443 (3) | 0.30227 (7) | 1.3350 (2) | 0.0313 (4) | |
Cl2 | −0.5635 (2) | 0.48206 (5) | 0.67629 (19) | 0.0219 (3) | |
N1 | 0.0818 (16) | 0.3087 (4) | 0.9195 (14) | 0.052 (2) | |
H1A | 0.2296 | 0.3060 | 1.0540 | 0.063* | |
N2 | −0.0884 (18) | 0.4633 (5) | 1.083 (2) | 0.061 (2) | |
H2B | −0.2225 | 0.4640 | 0.9363 | 0.074* | |
C1 | 0.092 (2) | 0.1998 (6) | 0.814 (2) | 0.065 (3) | |
C2 | −0.012 (3) | 0.1787 (6) | 0.583 (2) | 0.078 (4) | |
H2A | −0.1656 | 0.1919 | 0.4903 | 0.094* | |
C3 | 0.141 (3) | 0.1344 (6) | 0.500 (2) | 0.075 (3) | |
H3A | 0.0818 | 0.1180 | 0.3493 | 0.090* | |
C4 | 0.359 (3) | 0.1172 (6) | 0.629 (3) | 0.092 (4) | |
H4A | 0.4563 | 0.0907 | 0.5670 | 0.110* | |
C5 | 0.446 (3) | 0.1374 (7) | 0.855 (3) | 0.094 (5) | |
H5A | 0.6003 | 0.1239 | 0.9458 | 0.113* | |
C6 | 0.310 (2) | 0.1772 (6) | 0.950 (2) | 0.074 (3) | |
H6A | 0.3662 | 0.1887 | 1.1075 | 0.088* | |
C7 | −0.044 (3) | 0.2487 (6) | 0.896 (2) | 0.067 (3) | |
H7A | −0.0677 | 0.2372 | 1.0479 | 0.080* | |
H7B | −0.2077 | 0.2525 | 0.7861 | 0.080* | |
C8 | 0.171 (2) | 0.3228 (4) | 0.7060 (17) | 0.050 (2) | |
H8A | 0.2488 | 0.3622 | 0.7239 | 0.074* | |
H8B | 0.0318 | 0.3227 | 0.5683 | 0.074* | |
H8C | 0.2896 | 0.2925 | 0.6890 | 0.074* | |
C9 | −0.065 (2) | 0.3554 (5) | 0.967 (2) | 0.057 (3) | |
H9A | −0.1454 | 0.3416 | 1.0862 | 0.069* | |
H9B | −0.1955 | 0.3646 | 0.8253 | 0.069* | |
C10 | 0.079 (2) | 0.4127 (6) | 1.0534 (19) | 0.058 (3) | |
H10A | 0.1997 | 0.4047 | 1.2031 | 0.069* | |
H10B | 0.1706 | 0.4249 | 0.9411 | 0.069* | |
C11 | −0.205 (3) | 0.4576 (7) | 1.257 (3) | 0.075 (4) | |
H11A | −0.0833 | 0.4579 | 1.4077 | 0.113* | |
H11B | −0.2958 | 0.4198 | 1.2383 | 0.113* | |
H11C | −0.3186 | 0.4910 | 1.2494 | 0.113* | |
C12 | 0.045 (3) | 0.5223 (6) | 1.088 (2) | 0.066 (3) | |
H12A | −0.0741 | 0.5546 | 1.0381 | 0.099* | |
H12B | 0.1517 | 0.5202 | 0.9838 | 0.099* | |
H12C | 0.1441 | 0.5304 | 1.2459 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0262 (7) | 0.0399 (11) | 0.0259 (7) | −0.0014 (7) | 0.0034 (6) | 0.0010 (6) |
Cl2 | 0.0176 (6) | 0.0285 (7) | 0.0176 (6) | −0.0026 (6) | 0.0012 (4) | 0.0048 (5) |
N1 | 0.049 (4) | 0.063 (5) | 0.038 (4) | −0.010 (4) | −0.001 (3) | 0.007 (4) |
N2 | 0.044 (4) | 0.060 (6) | 0.084 (6) | 0.002 (4) | 0.024 (4) | 0.005 (4) |
C1 | 0.065 (6) | 0.067 (7) | 0.067 (6) | 0.001 (5) | 0.026 (5) | −0.006 (5) |
C2 | 0.082 (9) | 0.080 (8) | 0.065 (7) | −0.004 (7) | 0.007 (6) | −0.004 (6) |
C3 | 0.091 (8) | 0.053 (6) | 0.081 (7) | −0.008 (7) | 0.023 (6) | −0.012 (6) |
C4 | 0.107 (10) | 0.045 (6) | 0.143 (13) | 0.000 (7) | 0.067 (9) | −0.017 (7) |
C5 | 0.084 (9) | 0.055 (6) | 0.130 (12) | 0.005 (8) | 0.006 (8) | −0.012 (9) |
C6 | 0.067 (7) | 0.083 (9) | 0.071 (7) | −0.003 (6) | 0.019 (6) | 0.002 (6) |
C7 | 0.076 (7) | 0.070 (7) | 0.060 (6) | −0.003 (6) | 0.025 (5) | −0.002 (5) |
C8 | 0.060 (6) | 0.049 (6) | 0.034 (4) | −0.005 (4) | 0.002 (4) | 0.002 (3) |
C9 | 0.050 (5) | 0.063 (6) | 0.060 (6) | 0.006 (5) | 0.016 (5) | 0.003 (5) |
C10 | 0.050 (5) | 0.065 (6) | 0.049 (5) | 0.007 (5) | −0.004 (4) | 0.009 (4) |
C11 | 0.056 (6) | 0.086 (8) | 0.078 (7) | −0.009 (6) | 0.007 (6) | −0.018 (6) |
C12 | 0.061 (6) | 0.068 (7) | 0.063 (7) | 0.011 (6) | 0.006 (5) | 0.006 (5) |
N1—C9 | 1.413 (15) | C5—H5A | 0.9500 |
N1—C7 | 1.511 (17) | C6—H6A | 0.9500 |
N1—C8 | 1.530 (14) | C7—H7A | 0.9900 |
N1—H1A | 1.0000 | C7—H7B | 0.9900 |
N2—C11 | 1.38 (2) | C8—H8A | 0.9800 |
N2—C10 | 1.520 (16) | C8—H8B | 0.9800 |
N2—C12 | 1.521 (17) | C8—H8C | 0.9800 |
N2—H2B | 1.0000 | C9—C10 | 1.538 (16) |
C1—C6 | 1.382 (18) | C9—H9A | 0.9900 |
C1—C2 | 1.435 (18) | C9—H9B | 0.9900 |
C1—C7 | 1.497 (18) | C10—H10A | 0.9900 |
C2—C3 | 1.49 (2) | C10—H10B | 0.9900 |
C2—H2A | 0.9500 | C11—H11A | 0.9800 |
C3—C4 | 1.33 (2) | C11—H11B | 0.9800 |
C3—H3A | 0.9500 | C11—H11C | 0.9800 |
C4—C5 | 1.39 (2) | C12—H12A | 0.9800 |
C4—H4A | 0.9500 | C12—H12B | 0.9800 |
C5—C6 | 1.40 (2) | C12—H12C | 0.9800 |
C9—N1—C7 | 112.7 (9) | C1—C7—H7B | 108.7 |
C9—N1—C8 | 111.3 (9) | N1—C7—H7B | 108.7 |
C7—N1—C8 | 111.0 (8) | H7A—C7—H7B | 107.6 |
C9—N1—H1A | 107.2 | N1—C8—H8A | 109.5 |
C7—N1—H1A | 107.2 | N1—C8—H8B | 109.5 |
C8—N1—H1A | 107.2 | H8A—C8—H8B | 109.5 |
C11—N2—C10 | 117.4 (11) | N1—C8—H8C | 109.5 |
C11—N2—C12 | 113.6 (11) | H8A—C8—H8C | 109.5 |
C10—N2—C12 | 109.0 (9) | H8B—C8—H8C | 109.5 |
C11—N2—H2B | 105.2 | N1—C9—C10 | 113.1 (9) |
C10—N2—H2B | 105.2 | N1—C9—H9A | 109.0 |
C12—N2—H2B | 105.2 | C10—C9—H9A | 109.0 |
C6—C1—C2 | 121.6 (13) | N1—C9—H9B | 109.0 |
C6—C1—C7 | 122.1 (12) | C10—C9—H9B | 109.0 |
C2—C1—C7 | 116.3 (12) | H9A—C9—H9B | 107.8 |
C1—C2—C3 | 114.6 (13) | N2—C10—C9 | 111.4 (9) |
C1—C2—H2A | 122.7 | N2—C10—H10A | 109.3 |
C3—C2—H2A | 122.7 | C9—C10—H10A | 109.3 |
C4—C3—C2 | 122.1 (13) | N2—C10—H10B | 109.3 |
C4—C3—H3A | 118.9 | C9—C10—H10B | 109.3 |
C2—C3—H3A | 118.9 | H10A—C10—H10B | 108.0 |
C3—C4—C5 | 120.6 (15) | N2—C11—H11A | 109.5 |
C3—C4—H4A | 119.7 | N2—C11—H11B | 109.5 |
C5—C4—H4A | 119.7 | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 121.0 (14) | N2—C11—H11C | 109.5 |
C4—C5—H5A | 119.5 | H11A—C11—H11C | 109.5 |
C6—C5—H5A | 119.5 | H11B—C11—H11C | 109.5 |
C1—C6—C5 | 119.7 (13) | N2—C12—H12A | 109.5 |
C1—C6—H6A | 120.1 | N2—C12—H12B | 109.5 |
C5—C6—H6A | 120.1 | H12A—C12—H12B | 109.5 |
C1—C7—N1 | 114.2 (11) | N2—C12—H12C | 109.5 |
C1—C7—H7A | 108.7 | H12A—C12—H12C | 109.5 |
N1—C7—H7A | 108.7 | H12B—C12—H12C | 109.5 |
C6—C1—C2—C3 | −4 (2) | C2—C1—C7—N1 | −108.9 (14) |
C7—C1—C2—C3 | 174.3 (12) | C9—N1—C7—C1 | 172.2 (10) |
C1—C2—C3—C4 | −1 (2) | C8—N1—C7—C1 | 46.6 (13) |
C2—C3—C4—C5 | 4 (2) | C7—N1—C9—C10 | 165.1 (9) |
C3—C4—C5—C6 | −1 (3) | C8—N1—C9—C10 | −69.5 (11) |
C2—C1—C6—C5 | 7 (2) | C11—N2—C10—C9 | 67.8 (13) |
C7—C1—C6—C5 | −171.5 (14) | C12—N2—C10—C9 | −161.2 (10) |
C4—C5—C6—C1 | −4 (2) | N1—C9—C10—N2 | 175.1 (10) |
C6—C1—C7—N1 | 69.3 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 1.00 | 2.11 | 3.107 (8) | 179 |
N2—H2B···Cl2 | 1.00 | 2.18 | 3.148 (11) | 163 |
C7—H7B···Cl1i | 0.99 | 2.92 | 3.749 (13) | 142 |
C8—H8A···Cl2ii | 0.98 | 2.93 | 3.893 (10) | 168 |
C8—H8B···Cl1i | 0.98 | 2.79 | 3.690 (11) | 154 |
C8—H8C···Cl1iii | 0.98 | 2.88 | 3.486 (12) | 121 |
C9—H9A···Cl1iv | 0.99 | 2.74 | 3.711 (12) | 168 |
C10—H10A···Cl1 | 0.99 | 2.98 | 3.682 (11) | 129 |
C10—H10B···Cl2ii | 0.99 | 2.78 | 3.750 (13) | 168 |
C11—H11B···Cl1iv | 0.98 | 2.89 | 3.831 (17) | 161 |
C12—H12B···Cl2ii | 0.98 | 2.89 | 3.842 (15) | 166 |
C12—H12C···Cl2v | 0.98 | 2.88 | 3.747 (13) | 147 |
Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z; (iii) x, y, z−1; (iv) x−1, y, z; (v) x+1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 1.00 | 2.11 | 3.107 (8) | 179 |
N2—H2B···Cl2 | 1.00 | 2.18 | 3.148 (11) | 163 |
C7—H7B···Cl1i | 0.99 | 2.92 | 3.749 (13) | 142 |
C8—H8A···Cl2ii | 0.98 | 2.93 | 3.893 (10) | 168 |
C8—H8B···Cl1i | 0.98 | 2.79 | 3.690 (11) | 154 |
C8—H8C···Cl1iii | 0.98 | 2.88 | 3.486 (12) | 121 |
C9—H9A···Cl1iv | 0.99 | 2.74 | 3.711 (12) | 168 |
C10—H10A···Cl1 | 0.99 | 2.98 | 3.682 (11) | 129 |
C10—H10B···Cl2ii | 0.99 | 2.78 | 3.750 (13) | 168 |
C11—H11B···Cl1iv | 0.98 | 2.89 | 3.831 (17) | 161 |
C12—H12B···Cl2ii | 0.98 | 2.89 | 3.842 (15) | 166 |
C12—H12C···Cl2v | 0.98 | 2.88 | 3.747 (13) | 147 |
Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z; (iii) x, y, z−1; (iv) x−1, y, z; (v) x+1, y, z+1. |
Acknowledgements
RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Fox, H. H. & Wenner, W. (1951). J. Org. Chem. 16, 225–231. CrossRef CAS Web of Science Google Scholar
Gardner, J. H. & Stevens, J. R. (1949). J. Am. Chem. Soc. 71, 1868–1870. CrossRef CAS Web of Science Google Scholar
Manjare, S. T., Singh, H. B. & Butcher, R. J. (2014). Acta Cryst. E70, 118–120. CSD CrossRef IUCr Journals Google Scholar
Rietveld, M. H. P. W., -Ooyevaar, I. C. M., Kapteijn, G. M., Grove, D. M., Smeets, W. J. J., Kooijman, H., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 3782–3787. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.