organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o915-o916

Crystal structure of 4-fluoro-N-[2-(4-fluoro­benzo­yl)hydra­zine-1-carbono­thio­yl]benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: sitifairus@ukm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 July 2014; accepted 6 July 2014; online 1 August 2014)

In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro­benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro­benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl­thio­amide group and its attached ring is 12.98 (10)°. The major twists in the mol­ecule occur about the C—N—N—C bonds [torsion angle = −138.7 (2)°] and the Car—Car—C—N (ar = aromatic) bonds [−132.0 (2)°]. An intra­molecular N—H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating (001) sheets. Weak C—H⋯O and C—H⋯F inter­actions are also observed.

1. Related literature

For further synthetic details and the crystal structures of related thio­urea derivatives, see: Yamin & Yusof (2003a[Yamin, B. M. & Yusof, M. S. M. (2003a). Acta Cryst. E59, o124-o126.],b[Yamin, B. M. & Yusof, M. S. M. (2003b). Acta Cryst. E59, o358-o359.]); Yusof et al. (2003[Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810-o811.]); For a metal complex with a similar ligand, see: Ke et al. (2007[Ke, Y.-Z., Zheng, L.-F., Luo, J.-H., Huang, X.-H. & Huang, C.-C. (2007). Acta Cryst. C63, m343-m345.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H11F2N3O2S

  • Mr = 335.33

  • Orthorhombic, P b c a

  • a = 11.6172 (6) Å

  • b = 8.4086 (5) Å

  • c = 30.0002 (16) Å

  • V = 2930.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.50 × 0.12 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.980

  • 76830 measured reflections

  • 2886 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.137

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 1.04

  • 2886 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.89 2.571 (2) 135
N2—H2A⋯S1i 0.86 2.84 3.3875 (18) 123
N1—H1A⋯O2ii 0.86 2.33 3.165 (2) 165
N3—H3⋯O2iii 0.86 2.10 2.942 (2) 166
C4—H4⋯F1iv 0.93 2.49 3.409 (3) 169
C5—H5⋯O2ii 0.93 2.45 3.345 (3) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For further synthetic details and the crystal structures of related thiourea derivatives, see: Yamin & Yusof (2003a,b); Yusof et al. (2003); For a metal complex with a similar ligand, see: Ke et al. (2007).

Experimental top

30 ml acetone containing 4-fluorobenzoyl isothiocyanate (1.81 g, 0.01 mol) was mixed with hydrazine (0.16 g, 0.005 mol). The mixture was refluxed for 2 hours. The solution was filtered and left to evaporate at room temperature. The white precipitate obtained after a few days, was washed with water and cold ethanol. Colourless blocks of the title compound were obtained by recrystallization from ethanol solution.

Refinement top

After location in the difference map, the H-atoms attached to the C and N atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93-0.97 Å, N—H = 0.86 Å and with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with 50% probability displacement ellipsoids. The dashes line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. : Unit-cell packing for (I) in the unit cell viewed down a axis. The dashes lines indicate hydrogen bonds.
4-Fluoro-N-[2-(4-fluorobenzoyl)hydrazine-1-carbonothioyl]benzamide top
Crystal data top
C15H11F2N3O2SZ = 8
Mr = 335.33F(000) = 1376
Orthorhombic, PbcaDx = 1.520 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 11.6172 (6) ŵ = 0.26 mm1
b = 8.4086 (5) ÅT = 296 K
c = 30.0002 (16) ÅBlock, colorless
V = 2930.6 (3) Å30.50 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed tube2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.883, Tmax = 0.980k = 1010
76830 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0354P)2 + 2.0394P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H11F2N3O2SV = 2930.6 (3) Å3
Mr = 335.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.6172 (6) ŵ = 0.26 mm1
b = 8.4086 (5) ÅT = 296 K
c = 30.0002 (16) Å0.50 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2024 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.980Rint = 0.137
76830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2886 reflectionsΔρmin = 0.21 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98887 (5)0.15863 (8)0.73680 (2)0.04054 (19)
O10.69608 (15)0.4074 (2)0.80598 (6)0.0585 (6)
O20.64343 (13)0.34844 (18)0.67414 (5)0.0328 (4)
N10.88035 (15)0.3239 (2)0.79937 (6)0.0283 (4)
H1A0.94720.32900.81160.034*
N20.76928 (15)0.2357 (2)0.74100 (6)0.0308 (5)
H2A0.71370.28710.75330.037*
N30.74823 (15)0.1473 (2)0.70307 (5)0.0278 (4)
H30.77840.05480.69950.033*
C10.7245 (2)0.5302 (3)0.88928 (8)0.0444 (7)
H10.65580.54690.87410.053*
C20.7347 (2)0.5802 (3)0.93299 (8)0.0511 (7)
H20.67380.63030.94740.061*
C30.8362 (2)0.5540 (3)0.95425 (8)0.0430 (7)
C40.9276 (2)0.4826 (3)0.93441 (8)0.0479 (7)
H40.99590.46670.95000.057*
C50.9171 (2)0.4339 (3)0.89050 (8)0.0402 (6)
H50.97920.38610.87620.048*
C60.81520 (19)0.4557 (3)0.86779 (7)0.0300 (5)
C70.79209 (19)0.3964 (3)0.82191 (7)0.0315 (5)
C80.87407 (18)0.2428 (3)0.75895 (7)0.0258 (5)
C90.67935 (17)0.2104 (3)0.67201 (7)0.0254 (5)
C100.64585 (18)0.1018 (3)0.63505 (7)0.0263 (5)
C110.6553 (2)0.1549 (3)0.59144 (7)0.0383 (6)
H110.68380.25630.58580.046*
C120.6228 (2)0.0589 (3)0.55647 (8)0.0481 (7)
H120.63000.09310.52710.058*
C130.5797 (2)0.0878 (3)0.56616 (9)0.0503 (7)
C150.6004 (2)0.0473 (3)0.64350 (8)0.0360 (6)
H150.59290.08280.67270.043*
F10.84583 (15)0.6012 (2)0.99733 (5)0.0681 (5)
F20.54797 (19)0.1828 (2)0.53146 (6)0.0870 (7)
C140.5660 (2)0.1434 (3)0.60860 (9)0.0491 (7)
H140.53440.24330.61390.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (3)0.0533 (4)0.0412 (4)0.0032 (3)0.0018 (3)0.0162 (3)
O10.0387 (11)0.0887 (16)0.0482 (11)0.0263 (10)0.0169 (9)0.0332 (11)
O20.0344 (9)0.0280 (9)0.0359 (9)0.0044 (8)0.0042 (7)0.0043 (7)
N10.0248 (9)0.0357 (11)0.0242 (9)0.0003 (8)0.0042 (8)0.0055 (8)
N20.0269 (10)0.0392 (12)0.0262 (10)0.0057 (9)0.0042 (8)0.0118 (9)
N30.0280 (9)0.0286 (10)0.0270 (10)0.0032 (9)0.0059 (8)0.0073 (8)
C10.0390 (15)0.0567 (18)0.0374 (14)0.0123 (13)0.0061 (12)0.0095 (13)
C20.0505 (17)0.0635 (19)0.0394 (15)0.0131 (15)0.0054 (13)0.0154 (14)
C30.0531 (17)0.0494 (17)0.0265 (13)0.0062 (14)0.0001 (12)0.0112 (12)
C40.0389 (14)0.067 (2)0.0377 (15)0.0004 (14)0.0096 (12)0.0118 (14)
C50.0347 (14)0.0535 (17)0.0323 (13)0.0045 (12)0.0021 (11)0.0116 (12)
C60.0316 (13)0.0303 (13)0.0280 (12)0.0002 (10)0.0017 (10)0.0027 (11)
C70.0300 (12)0.0332 (14)0.0314 (13)0.0042 (10)0.0046 (10)0.0026 (11)
C80.0294 (12)0.0253 (12)0.0228 (11)0.0025 (10)0.0034 (10)0.0009 (9)
C90.0214 (11)0.0280 (13)0.0267 (12)0.0014 (10)0.0019 (9)0.0010 (10)
C100.0233 (11)0.0289 (13)0.0267 (12)0.0027 (10)0.0056 (9)0.0036 (10)
C110.0464 (14)0.0374 (15)0.0313 (13)0.0068 (13)0.0024 (11)0.0013 (12)
C120.0634 (18)0.0546 (18)0.0261 (13)0.0020 (15)0.0060 (12)0.0041 (13)
C130.0603 (18)0.0505 (18)0.0399 (16)0.0067 (15)0.0182 (13)0.0189 (14)
C150.0390 (14)0.0368 (15)0.0321 (13)0.0051 (12)0.0082 (11)0.0020 (11)
F10.0741 (11)0.0980 (14)0.0322 (8)0.0006 (10)0.0036 (8)0.0258 (9)
F20.1324 (18)0.0781 (14)0.0506 (11)0.0280 (12)0.0284 (11)0.0258 (10)
C140.0589 (18)0.0370 (16)0.0514 (17)0.0158 (14)0.0154 (14)0.0037 (13)
Geometric parameters (Å, º) top
S1—C81.650 (2)C4—C51.385 (3)
O1—C71.217 (3)C4—H40.9300
O2—C91.235 (3)C5—C61.378 (3)
N1—C71.371 (3)C5—H50.9300
N1—C81.393 (3)C6—C71.488 (3)
N1—H1A0.8600C9—C101.488 (3)
N2—C81.333 (3)C10—C151.384 (3)
N2—N31.381 (2)C10—C111.387 (3)
N2—H2A0.8600C11—C121.377 (3)
N3—C91.338 (3)C11—H110.9300
N3—H30.8600C12—C131.362 (4)
C1—C21.382 (3)C12—H120.9300
C1—C61.385 (3)C13—F21.363 (3)
C1—H10.9300C13—C141.366 (4)
C2—C31.359 (4)C15—C141.381 (3)
C2—H20.9300C15—H150.9300
C3—F11.357 (3)C14—H140.9300
C3—C41.358 (4)
C7—N1—C8127.43 (18)O1—C7—N1121.7 (2)
C7—N1—H1A116.3O1—C7—C6120.2 (2)
C8—N1—H1A116.3N1—C7—C6118.04 (19)
C8—N2—N3121.27 (18)N2—C8—N1114.95 (18)
C8—N2—H2A119.4N2—C8—S1123.80 (16)
N3—N2—H2A119.4N1—C8—S1121.23 (15)
C9—N3—N2117.80 (18)O2—C9—N3122.6 (2)
C9—N3—H3121.1O2—C9—C10121.8 (2)
N2—N3—H3121.1N3—C9—C10115.58 (19)
C2—C1—C6121.0 (2)C15—C10—C11119.7 (2)
C2—C1—H1119.5C15—C10—C9121.3 (2)
C6—C1—H1119.5C11—C10—C9119.0 (2)
C3—C2—C1118.0 (2)C12—C11—C10120.5 (2)
C3—C2—H2121.0C12—C11—H11119.7
C1—C2—H2121.0C10—C11—H11119.7
F1—C3—C4118.8 (2)C13—C12—C11118.0 (2)
F1—C3—C2118.1 (2)C13—C12—H12121.0
C4—C3—C2123.0 (2)C11—C12—H12121.0
C3—C4—C5118.6 (2)C12—C13—F2117.8 (2)
C3—C4—H4120.7C12—C13—C14123.5 (2)
C5—C4—H4120.7F2—C13—C14118.7 (3)
C6—C5—C4120.5 (2)C14—C15—C10120.1 (2)
C6—C5—H5119.8C14—C15—H15119.9
C4—C5—H5119.8C10—C15—H15119.9
C5—C6—C1118.9 (2)C13—C14—C15118.2 (3)
C5—C6—C7124.6 (2)C13—C14—H14120.9
C1—C6—C7116.4 (2)C15—C14—H14120.9
C8—N2—N3—C9138.7 (2)C7—N1—C8—N20.5 (3)
C6—C1—C2—C30.0 (4)C7—N1—C8—S1178.67 (18)
C1—C2—C3—F1179.2 (3)N2—N3—C9—O26.9 (3)
C1—C2—C3—C40.5 (5)N2—N3—C9—C10171.47 (17)
F1—C3—C4—C5179.6 (3)O2—C9—C10—C15127.2 (2)
C2—C3—C4—C50.1 (4)N3—C9—C10—C1551.2 (3)
C3—C4—C5—C60.9 (4)O2—C9—C10—C1149.5 (3)
C4—C5—C6—C11.4 (4)N3—C9—C10—C11132.0 (2)
C4—C5—C6—C7175.0 (2)C15—C10—C11—C121.9 (4)
C2—C1—C6—C51.0 (4)C9—C10—C11—C12178.6 (2)
C2—C1—C6—C7175.7 (3)C10—C11—C12—C131.1 (4)
C8—N1—C7—O16.0 (4)C11—C12—C13—F2179.8 (3)
C8—N1—C7—C6171.2 (2)C11—C12—C13—C140.7 (4)
C5—C6—C7—O1172.8 (3)C11—C10—C15—C140.9 (4)
C1—C6—C7—O13.6 (4)C9—C10—C15—C14177.6 (2)
C5—C6—C7—N14.4 (4)C12—C13—C14—C151.7 (4)
C1—C6—C7—N1179.1 (2)F2—C13—C14—C15178.8 (3)
N3—N2—C8—N1174.21 (18)C10—C15—C14—C130.8 (4)
N3—N2—C8—S13.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.892.571 (2)135
N2—H2A···S1i0.862.843.3875 (18)123
N1—H1A···O2ii0.862.333.165 (2)165
N3—H3···O2iii0.862.102.942 (2)166
C4—H4···F1iv0.932.493.409 (3)169
C5—H5···O2ii0.932.453.345 (3)160
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+3/2, y1/2, z; (iv) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.892.571 (2)135
N2—H2A···S1i0.862.843.3875 (18)123
N1—H1A···O2ii0.862.333.165 (2)165
N3—H3···O2iii0.862.102.942 (2)166
C4—H4···F1iv0.932.493.409 (3)169
C5—H5···O2ii0.932.453.345 (3)160
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+3/2, y1/2, z; (iv) x+2, y+1, z+2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants DLP-2013-009 and DIP-2012-11, and the Centre of Research and Instrumentation (CRIM) for research facilities.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKe, Y.-Z., Zheng, L.-F., Luo, J.-H., Huang, X.-H. & Huang, C.-C. (2007). Acta Cryst. C63, m343–m345.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003a). Acta Cryst. E59, o124–o126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003b). Acta Cryst. E59, o358–o359.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810–o811.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o915-o916
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds