organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o897-o898

Crystal structure of ethyl 2-(di­eth­­oxy­phosphor­yl)-2-(2,3,4-tri­meth­­oxy­phen­yl)acetate

aJohannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10-14, 55128 Mainz, Germany
*Correspondence e-mail: waldvogel@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 July 2014; accepted 7 July 2014; online 1 August 2014)

The title compound, C17H27O8P, was prepared by Michaelis–Arbuzov reaction of ethyl 2-bromo-2-(2,3,4-tri­meth­oxy­phen­yl)acetate and triethyl phosphite. Such compounds rarely crystallize, but single crystals were recovered after the initial oil was left for approximately 10 years. The bond angle of the sp3-hybridized C atom connecting the benzene derivative with the phospho unit is widened marginally [112.5 (2)°]. The terminal P—O bond length of 1.464 (2) Å clearly indicates a double bond, whereas the two O atoms of the eth­oxy groups connected to the phospho­rous atom have bond lengths of 1.580 (2) Å and 1.581 (3) Å. The three meth­oxy groups emerge out of the benzene-ring plane due to steric hindrance [C—C—O—C torsion angles = −179.9 (3)°, −52.9 (4)° and 115.3 (4)°]. In the crystal, inversion dimers linked by pairs of C—H⋯O=P hydrogen bonds generate R22(14) loops. The chosen crystal was modelled as a non-merohedral twin.

1. Related literature

For the complete synthesis sequence starting from the corresponding benzene derivative, see: Ianni & Waldvogel (2006[Ianni, A. & Waldvogel, S. R. (2006). Synthesis, 13, 2103-2112.]). For the use of the title compound as crucial inter­mediate in a novel synthetic route for the preparation of phenanthrene carboxyl­ates, see: Schubert et al. (2014[Schubert, M., Leppin, J., Wehming, K., Schollmeyer, D., Heinze, K. & Waldvogel, S. R. (2014). Angew. Chem. Int. Ed. 53, 2494-2497.]); Wehming et al. (2014[Wehming, K., Schubert, M., Schnakenburg, G. & Waldvogel, S. R. (2014). Chem. Eur. J. 20. In the press. doi: 10.1002/chem.201403442]). For the Michaelis–Arbuzov reaction, see: Michaelis & Kaehne (1898[Michaelis, A. & Kaehne, R. (1898). Ber. Dtsch. Chem. Ges. 31, 1048-1055.]). For a related structure, see: Negrimovsky et al. (2013[Negrimovsky, V., Komissarov, A., Perepukhov, A., Suponitsky, K., Perevalov, V. & Lukyanets, E. (2013). J. Porphyrins Phthalocyanines, 17, 587-595.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H27O8P

  • Mr = 390.35

  • Monoclinic, P 21 /c

  • a = 9.6314 (14) Å

  • b = 23.749 (4) Å

  • c = 8.8155 (14) Å

  • β = 104.117 (4)°

  • V = 1955.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.64 × 0.39 × 0.06 mm

2.2. Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) Tmin = 0.615, Tmax = 0.746

  • 3859 measured reflections

  • 3859 independent reflections

  • 3033 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.137

  • S = 1.07

  • 3859 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O19i 0.95 2.43 3.379 (4) 179
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the complete synthesis sequence starting from the corresponding benzene derivative, see: Ianni & Waldvogel (2006). For the use of the title compound as crucial intermediate in a novel synthetic route for the preparation of phenanthrene carboxylates, see: Schubert et al. (2014); Wehming et al. (2014). For the Michaelis–Arbuzov reaction, see: Michaelis & Kaehne (1898). For a related structure, see: Negrimovsky et al. (2013).

Experimental top

The title compound was prepared by heating ethyl 2-bromo-2-(2,3,4-trimethoxyphenyl)acetate (13.62 g, 40.9 mmol) with triethyl phosphite (7.4 ml, 43.4 mmol) to reflux for 2 h under inert conditions. After the reaction was cooled to room temperature H2O (20 ml) was added. The mixture was extracted with ethyl acetate (5 x 40 ml), the combined organic layer was washed with sat. NaCl solution (2 x 20 ml), dried over Na2SO4 and concentrated in vacuo. Further purification was achieved by a short-path distillation removing the excess of reagent followed by a short column chromatography using a ethyl acetate-cyclohexane mixture (40:60) as eluent. Analytically pure title compound was isolated as a colorless oil (15.67 g, 40.1 mmol, 98%). Partial crystallization of the colorless oil was observed approximately 10 years after preparation of the title compound. The storage of the material was done at ambient conditions and in absence of light. For further analytical data of the title compound, see: Ianni & Waldvogel (2006).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
Ethyl 2-(diethoxyphosphoryl)-2-(2,3,4-trimethoxyphenyl)acetate top
Crystal data top
C17H27O8PF(000) = 832
Mr = 390.35Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6314 (14) ÅCell parameters from 3917 reflections
b = 23.749 (4) Åθ = 2.3–27.0°
c = 8.8155 (14) ŵ = 0.18 mm1
β = 104.117 (4)°T = 173 K
V = 1955.5 (5) Å3Plate, colourless
Z = 40.64 × 0.39 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
3859 independent reflections
Radiation source: sealed tube3033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scanθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
h = 1211
Tmin = 0.615, Tmax = 0.746k = 029
3859 measured reflectionsl = 011
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0466P)2 + 2.5572P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3859 reflectionsΔρmax = 0.39 e Å3
236 parametersΔρmin = 0.43 e Å3
Crystal data top
C17H27O8PV = 1955.5 (5) Å3
Mr = 390.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6314 (14) ŵ = 0.18 mm1
b = 23.749 (4) ÅT = 173 K
c = 8.8155 (14) Å0.64 × 0.39 × 0.06 mm
β = 104.117 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
3859 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
3033 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.746Rint = 0.050
3859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
3859 reflectionsΔρmin = 0.43 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.82647 (10)0.11292 (4)0.68241 (11)0.0215 (2)
C10.5353 (3)0.11793 (14)0.6724 (4)0.0187 (7)
C20.4706 (4)0.06673 (14)0.6276 (4)0.0211 (7)
H20.51830.03320.67030.025*
C30.3376 (4)0.06270 (15)0.5217 (4)0.0231 (8)
H30.29520.02690.49290.028*
C40.2680 (4)0.11141 (14)0.4587 (4)0.0212 (7)
C50.3294 (4)0.16442 (14)0.5046 (4)0.0196 (8)
C60.4629 (3)0.16751 (13)0.6109 (4)0.0174 (7)
O70.1382 (2)0.11366 (10)0.3518 (3)0.0306 (7)
C80.0703 (4)0.06102 (17)0.3011 (6)0.0395 (11)
H8A0.02110.06790.22530.059*
H8B0.13250.03850.25190.059*
H8C0.05300.04060.39140.059*
O90.2567 (3)0.21360 (10)0.4542 (3)0.0243 (6)
C100.2349 (4)0.22605 (17)0.2889 (5)0.0342 (9)
H10A0.18260.26160.26490.051*
H10B0.32800.22930.26300.051*
H10C0.17950.19570.22720.051*
O110.5264 (3)0.21800 (9)0.6647 (3)0.0223 (5)
C120.5414 (4)0.25940 (15)0.5502 (5)0.0304 (9)
H12A0.58790.29310.60360.046*
H12B0.59990.24390.48360.046*
H12C0.44650.26940.48570.046*
C130.6843 (3)0.12212 (14)0.7830 (4)0.0195 (8)
H130.69410.16090.82880.023*
C140.7003 (4)0.08058 (15)0.9180 (4)0.0249 (8)
O150.7525 (3)0.03478 (12)0.9248 (3)0.0454 (8)
O160.6416 (3)0.10238 (11)1.0281 (3)0.0321 (6)
C170.6348 (5)0.06604 (17)1.1595 (5)0.0350 (9)
H17A0.73240.05561.21900.042*
H17B0.58130.03111.12150.042*
C180.5600 (5)0.0985 (2)1.2603 (5)0.0431 (11)
H18A0.55320.07551.35040.065*
H18B0.61410.13291.29690.065*
H18C0.46370.10851.19990.065*
O190.8192 (3)0.06344 (10)0.5818 (3)0.0257 (6)
O200.8143 (3)0.17162 (10)0.5957 (3)0.0244 (6)
C210.9160 (4)0.18363 (17)0.5007 (5)0.0352 (10)
H21A0.90290.15640.41340.042*
H21B1.01530.18010.56540.042*
C220.8901 (4)0.24207 (19)0.4380 (6)0.0437 (11)
H22A0.95750.25070.37410.066*
H22B0.79180.24510.37370.066*
H22C0.90390.26880.52520.066*
O230.9696 (3)0.11834 (11)0.8151 (3)0.0331 (7)
C241.0793 (4)0.07506 (18)0.8476 (6)0.0399 (11)
H24A1.08050.05440.75040.048*
H24B1.05880.04780.92430.048*
C251.2197 (4)0.1021 (2)0.9113 (6)0.0513 (13)
H25A1.29460.07320.93370.077*
H25B1.23960.12880.83450.077*
H25C1.21800.12221.00800.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0230 (4)0.0194 (4)0.0225 (5)0.0009 (4)0.0062 (4)0.0003 (4)
C10.0236 (17)0.0192 (17)0.0154 (16)0.0019 (14)0.0091 (14)0.0032 (15)
C20.0276 (19)0.0157 (17)0.0223 (18)0.0023 (13)0.0105 (16)0.0033 (15)
C30.0277 (19)0.0161 (17)0.028 (2)0.0004 (14)0.0125 (16)0.0002 (15)
C40.0197 (17)0.0223 (18)0.0231 (17)0.0006 (14)0.0080 (14)0.0035 (16)
C50.0235 (18)0.0165 (17)0.0205 (18)0.0036 (13)0.0088 (14)0.0008 (14)
C60.0263 (18)0.0126 (16)0.0168 (17)0.0005 (13)0.0120 (14)0.0009 (14)
O70.0223 (13)0.0267 (14)0.0401 (16)0.0004 (11)0.0020 (11)0.0056 (12)
C80.031 (2)0.032 (2)0.049 (3)0.0051 (17)0.005 (2)0.007 (2)
O90.0270 (13)0.0172 (12)0.0287 (13)0.0058 (10)0.0071 (11)0.0028 (11)
C100.037 (2)0.035 (2)0.028 (2)0.0052 (17)0.0032 (19)0.0073 (19)
O110.0300 (13)0.0140 (11)0.0215 (13)0.0008 (10)0.0036 (11)0.0003 (11)
C120.035 (2)0.0218 (19)0.035 (2)0.0032 (16)0.0086 (18)0.0081 (17)
C130.0247 (18)0.0182 (17)0.0174 (19)0.0009 (14)0.0085 (15)0.0007 (14)
C140.035 (2)0.0213 (19)0.0179 (19)0.0010 (15)0.0054 (16)0.0030 (15)
O150.071 (2)0.0349 (17)0.0366 (17)0.0255 (15)0.0260 (17)0.0162 (14)
O160.0522 (17)0.0288 (14)0.0207 (14)0.0094 (12)0.0191 (13)0.0070 (12)
C170.047 (2)0.037 (2)0.025 (2)0.0016 (18)0.0158 (19)0.0115 (19)
C180.046 (3)0.065 (3)0.020 (2)0.003 (2)0.014 (2)0.006 (2)
O190.0284 (14)0.0243 (13)0.0263 (13)0.0002 (11)0.0101 (12)0.0030 (11)
O200.0274 (14)0.0223 (13)0.0267 (13)0.0014 (10)0.0127 (11)0.0064 (11)
C210.036 (2)0.034 (2)0.043 (2)0.0025 (17)0.024 (2)0.011 (2)
C220.036 (2)0.046 (3)0.054 (3)0.004 (2)0.020 (2)0.022 (2)
O230.0285 (14)0.0308 (15)0.0366 (16)0.0065 (11)0.0015 (12)0.0036 (13)
C240.030 (2)0.032 (2)0.051 (3)0.0120 (17)0.003 (2)0.001 (2)
C250.031 (2)0.045 (3)0.071 (3)0.0013 (19)0.001 (2)0.006 (3)
Geometric parameters (Å, º) top
P1—O191.464 (2)C12—H12C0.9800
P1—O201.580 (2)C13—C141.524 (5)
P1—O231.581 (3)C13—H131.0000
P1—C131.817 (3)C14—O151.194 (4)
C1—C21.379 (5)C14—O161.341 (4)
C1—C61.408 (4)O16—C171.458 (4)
C1—C131.529 (5)C17—C181.488 (6)
C2—C31.392 (5)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.384 (5)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—O71.370 (4)C18—H18C0.9800
C4—C51.408 (5)O20—C211.463 (4)
C5—O91.378 (4)C21—C221.492 (6)
C5—C61.396 (5)C21—H21A0.9900
C6—O111.377 (4)C21—H21B0.9900
O7—C81.431 (4)C22—H22A0.9800
C8—H8A0.9800C22—H22B0.9800
C8—H8B0.9800C22—H22C0.9800
C8—H8C0.9800O23—C241.452 (4)
O9—C101.450 (5)C24—C251.478 (6)
C10—H10A0.9800C24—H24A0.9900
C10—H10B0.9800C24—H24B0.9900
C10—H10C0.9800C25—H25A0.9800
O11—C121.441 (4)C25—H25B0.9800
C12—H12A0.9800C25—H25C0.9800
C12—H12B0.9800
O19—P1—O20115.34 (14)C1—C13—P1112.5 (2)
O19—P1—O23114.73 (15)C14—C13—H13107.4
O20—P1—O23103.56 (15)C1—C13—H13107.4
O19—P1—C13117.50 (15)P1—C13—H13107.4
O20—P1—C1398.87 (14)O15—C14—O16124.2 (3)
O23—P1—C13104.72 (16)O15—C14—C13126.2 (3)
C2—C1—C6118.7 (3)O16—C14—C13109.6 (3)
C2—C1—C13121.9 (3)C14—O16—C17117.0 (3)
C6—C1—C13119.4 (3)O16—C17—C18106.8 (3)
C1—C2—C3122.0 (3)O16—C17—H17A110.4
C1—C2—H2119.0C18—C17—H17A110.4
C3—C2—H2119.0O16—C17—H17B110.4
C4—C3—C2119.2 (3)C18—C17—H17B110.4
C4—C3—H3120.4H17A—C17—H17B108.6
C2—C3—H3120.4C17—C18—H18A109.5
O7—C4—C3125.5 (3)C17—C18—H18B109.5
O7—C4—C5114.3 (3)H18A—C18—H18B109.5
C3—C4—C5120.2 (3)C17—C18—H18C109.5
O9—C5—C6119.0 (3)H18A—C18—H18C109.5
O9—C5—C4121.3 (3)H18B—C18—H18C109.5
C6—C5—C4119.6 (3)C21—O20—P1117.9 (2)
O11—C6—C5122.4 (3)O20—C21—C22108.6 (3)
O11—C6—C1117.3 (3)O20—C21—H21A110.0
C5—C6—C1120.2 (3)C22—C21—H21A110.0
C4—O7—C8116.8 (3)O20—C21—H21B110.0
O7—C8—H8A109.5C22—C21—H21B110.0
O7—C8—H8B109.5H21A—C21—H21B108.4
H8A—C8—H8B109.5C21—C22—H22A109.5
O7—C8—H8C109.5C21—C22—H22B109.5
H8A—C8—H8C109.5H22A—C22—H22B109.5
H8B—C8—H8C109.5C21—C22—H22C109.5
C5—O9—C10115.7 (3)H22A—C22—H22C109.5
O9—C10—H10A109.5H22B—C22—H22C109.5
O9—C10—H10B109.5C24—O23—P1123.4 (3)
H10A—C10—H10B109.5O23—C24—C25108.8 (3)
O9—C10—H10C109.5O23—C24—H24A109.9
H10A—C10—H10C109.5C25—C24—H24A109.9
H10B—C10—H10C109.5O23—C24—H24B109.9
C6—O11—C12117.7 (3)C25—C24—H24B109.9
O11—C12—H12A109.5H24A—C24—H24B108.3
O11—C12—H12B109.5C24—C25—H25A109.5
H12A—C12—H12B109.5C24—C25—H25B109.5
O11—C12—H12C109.5H25A—C25—H25B109.5
H12A—C12—H12C109.5C24—C25—H25C109.5
H12B—C12—H12C109.5H25A—C25—H25C109.5
C14—C13—C1110.9 (3)H25B—C25—H25C109.5
C14—C13—P1111.0 (2)
C6—C1—C2—C31.1 (5)C6—C1—C13—C14138.9 (3)
C13—C1—C2—C3177.2 (3)C2—C1—C13—P182.2 (4)
C1—C2—C3—C40.2 (5)C6—C1—C13—P196.1 (3)
C2—C3—C4—O7178.9 (3)O19—P1—C13—C1473.8 (3)
C2—C3—C4—C51.6 (5)O20—P1—C13—C14161.5 (2)
O7—C4—C5—O95.2 (5)O23—P1—C13—C1454.8 (3)
C3—C4—C5—O9174.3 (3)O19—P1—C13—C151.1 (3)
O7—C4—C5—C6178.8 (3)O20—P1—C13—C173.6 (3)
C3—C4—C5—C61.6 (5)O23—P1—C13—C1179.7 (2)
O9—C5—C6—O111.6 (5)C1—C13—C14—O1596.2 (4)
C4—C5—C6—O11177.6 (3)P1—C13—C14—O1529.7 (5)
O9—C5—C6—C1175.7 (3)C1—C13—C14—O1681.6 (4)
C4—C5—C6—C10.3 (5)P1—C13—C14—O16152.6 (3)
C2—C1—C6—O11176.4 (3)O15—C14—O16—C173.6 (6)
C13—C1—C6—O115.3 (4)C13—C14—O16—C17174.2 (3)
C2—C1—C6—C51.1 (5)C14—O16—C17—C18177.4 (3)
C13—C1—C6—C5177.3 (3)O19—P1—O20—C2155.7 (3)
C3—C4—O7—C80.4 (5)O23—P1—O20—C2170.5 (3)
C5—C4—O7—C8179.9 (3)C13—P1—O20—C21178.1 (3)
C6—C5—O9—C10115.3 (4)P1—O20—C21—C22176.8 (3)
C4—C5—O9—C1068.7 (4)O19—P1—O23—C246.6 (4)
C5—C6—O11—C1252.9 (4)O20—P1—O23—C24133.2 (3)
C1—C6—O11—C12129.7 (3)C13—P1—O23—C24123.7 (3)
C2—C1—C13—C1442.8 (4)P1—O23—C24—C25150.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O19i0.952.433.379 (4)179
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O19i0.952.433.379 (4)179
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIanni, A. & Waldvogel, S. R. (2006). Synthesis, 13, 2103–2112.  Google Scholar
First citationMichaelis, A. & Kaehne, R. (1898). Ber. Dtsch. Chem. Ges. 31, 1048–1055.  CrossRef CAS Google Scholar
First citationNegrimovsky, V., Komissarov, A., Perepukhov, A., Suponitsky, K., Perevalov, V. & Lukyanets, E. (2013). J. Porphyrins Phthalocyanines, 17, 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchubert, M., Leppin, J., Wehming, K., Schollmeyer, D., Heinze, K. & Waldvogel, S. R. (2014). Angew. Chem. Int. Ed. 53, 2494–2497.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWehming, K., Schubert, M., Schnakenburg, G. & Waldvogel, S. R. (2014). Chem. Eur. J. 20. In the press. doi: 10.1002/chem.201403442  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o897-o898
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds