organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o905-o906

Crystal structure of N1-phenyl-N4-[(quinolin-2-yl)methyl­­idene]benzene-1,4-di­amine

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, India, and cSchool of Chemical Sciences, S.R.T.M. University, Nanded 431 606, India
*Correspondence e-mail: shahid81chem@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 July 2014; accepted 9 July 2014; online 1 August 2014)

In the title compound, C22H17N3, the dihedral angles between the central benzene ring and the terminal phenyl ring and quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively, and the bond-angle sum at the amine N atom is 359.9°. In the crystal, the N—H group is not involved in hydrogen bonding and the mol­ecules are linked by weak C—H⋯π inter­actions, generating [010] chains.

1. Related literature

For applications of quinoline-containing Schiff bases see: Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]); Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]). The present work is part of an ongoing structural study of Schiff base-metal complexes, see: Faizi & Hussain (2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]); Faizi et al. (2014[Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H17N3

  • Mr = 323.39

  • Monoclinic, P 21 /c

  • a = 17.595 (2) Å

  • b = 7.3348 (8) Å

  • c = 12.5712 (18) Å

  • β = 99.769 (6)°

  • V = 1598.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.29 × 0.21 × 0.15 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.984

  • 6866 measured reflections

  • 2964 independent reflections

  • 1557 reflections with I > 2σ(I)

  • Rint = 0.063

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.105

  • S = 0.97

  • 2964 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg3i 0.93 2.61 3.430 (2) 148
C12—H12⋯Cg1i 0.93 2.79 3.536 (2) 138
C13—H13⋯Cg2i 0.93 2.71 3.508 (3) 145
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Chemical context top

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as anti­oxidative and anti­cancer and fluorescent probe agents in industry and in coordination chemistry (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014) and we report here the structure of N1-phenyl-N4-[(quinolin-2-yl)methyl­idene]benzene-1,4-di­amine (PQMBD).

Structural commentary top

The synthesis of PQMBD by condensation of 2-quinoline­carboxaldehyde and N-phenyl-p-phenyl­enedi­amine has not previously been reported. In the title compound (Fig. 1) PQMBD has non planar structure, the dihedral angle between the quinolinyl and p-phenyl­enedi­amine rings is 9.02 (4)° and the dihedral angle between the p-phenyl­enedi­amine and N-phenyl rings is 44.72 (7)°. The imine group displays a torsional angle (C9—C10—N2—C11) of 179.20 (2)°.

Supra­molecular features top

In the crystal, the N—H group is not involved in hydrogen bonding and the molecules are linked by weak C—H···π inter­actions, generating [010] chains.

Database survey top

There are very few examples similar to title compound and their metal complex have been reported in the literature (Patra & Goldberg 2003; Gonzalez et al., 2012).

Synthesis and crystallization top

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 85 mg (1 mmol) of 2-quinoline­carboxaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. Then, this mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with di­ethyl ether to give 150 mg (88%) of the title compound. Yellow blocks were obtained within 3 days by slow evaporation of the MeOH solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. the N-bound H-atoms were located in difference Fourier maps,and their positions were then held fixed. All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C).

Related literature top

For applications of quinoline-containing Schiff bases see: Das et al. (2013); Jursic et al. (2002); Motswainyana et al. (2013); Song et al. (2011). The present work is part of an ongoing structural study of Schiff base-metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.
N1-Phenyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine top
Crystal data top
C22H17N3F(000) = 680
Mr = 323.39Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 17.595 (2) Åθ = 2.6–28.6°
b = 7.3348 (8) ŵ = 0.08 mm1
c = 12.5712 (18) ÅT = 100 K
β = 99.769 (6)°Block, yellow
V = 1598.9 (4) Å30.29 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2964 independent reflections
Radiation source: fine-focus sealed tube1557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω–scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1921
Tmin = 0.967, Tmax = 0.984k = 88
6866 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H17N3V = 1598.9 (4) Å3
Mr = 323.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.595 (2) ŵ = 0.08 mm1
b = 7.3348 (8) ÅT = 100 K
c = 12.5712 (18) Å0.29 × 0.21 × 0.15 mm
β = 99.769 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1557 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.984Rint = 0.063
6866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.22 e Å3
2964 reflectionsΔρmin = 0.19 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25415 (13)0.2764 (3)0.16305 (19)0.0148 (6)
C20.18560 (13)0.3785 (3)0.1579 (2)0.0186 (6)
H20.17710.44640.21730.022*
C30.13189 (14)0.3776 (3)0.0660 (2)0.0209 (6)
H30.08690.44540.06350.025*
C40.14301 (14)0.2766 (3)0.0251 (2)0.0215 (7)
H40.10590.27770.08730.026*
C50.20884 (14)0.1767 (3)0.0211 (2)0.0208 (6)
H50.21640.11000.08130.025*
C60.26537 (14)0.1730 (3)0.07237 (19)0.0155 (6)
C70.33399 (13)0.0704 (3)0.08109 (19)0.0173 (6)
H70.34290.00270.02400.021*
C80.38676 (14)0.0787 (3)0.1728 (2)0.0174 (6)
H80.43180.01010.17980.021*
C90.37258 (14)0.1929 (3)0.2577 (2)0.0157 (6)
C100.43043 (15)0.2137 (3)0.3554 (2)0.0163 (6)
C110.55486 (14)0.1692 (3)0.4537 (2)0.0138 (6)
C120.62578 (13)0.0883 (3)0.44931 (19)0.0179 (6)
H120.63250.02520.38740.022*
C130.68652 (13)0.0993 (3)0.5345 (2)0.0182 (6)
H130.73320.04320.52960.022*
C140.67803 (14)0.1942 (3)0.62763 (19)0.0159 (6)
C150.60659 (14)0.2723 (3)0.6334 (2)0.0182 (6)
H150.59960.33450.69550.022*
C160.54638 (13)0.2585 (3)0.54833 (19)0.0180 (6)
H160.49900.31010.55430.022*
C170.81614 (14)0.1848 (3)0.7206 (2)0.0159 (6)
C180.85238 (14)0.2256 (3)0.6337 (2)0.0196 (6)
H180.82340.26530.56910.023*
C190.93117 (15)0.2075 (3)0.6429 (2)0.0246 (7)
H190.95480.23540.58410.030*
C200.97548 (15)0.1486 (3)0.7378 (2)0.0286 (7)
H201.02850.13490.74310.034*
C210.93964 (15)0.1103 (3)0.8252 (2)0.0282 (7)
H210.96900.07310.89010.034*
C220.86074 (14)0.1270 (3)0.8167 (2)0.0211 (7)
H220.83720.09930.87560.025*
N10.30802 (11)0.2868 (2)0.25571 (15)0.0160 (5)
N20.49805 (11)0.1482 (2)0.36031 (15)0.0165 (5)
N30.73653 (12)0.2067 (3)0.71688 (18)0.0206 (6)
H3N0.7212 (13)0.233 (3)0.779 (2)0.034 (8)*
H100.4135 (11)0.284 (3)0.4156 (16)0.016 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (16)0.0161 (14)0.0142 (15)0.0034 (12)0.0040 (12)0.0024 (11)
C20.0214 (16)0.0176 (14)0.0176 (17)0.0046 (12)0.0052 (13)0.0003 (12)
C30.0174 (16)0.0222 (15)0.0226 (18)0.0018 (12)0.0021 (13)0.0023 (13)
C40.0190 (17)0.0225 (15)0.0204 (17)0.0068 (13)0.0038 (12)0.0032 (13)
C50.0271 (17)0.0182 (15)0.0172 (17)0.0056 (13)0.0041 (13)0.0017 (12)
C60.0168 (16)0.0146 (14)0.0154 (16)0.0047 (11)0.0036 (12)0.0020 (12)
C70.0236 (16)0.0152 (14)0.0141 (16)0.0031 (12)0.0063 (13)0.0006 (11)
C80.0189 (16)0.0151 (14)0.0200 (17)0.0023 (11)0.0086 (13)0.0019 (12)
C90.0157 (16)0.0138 (14)0.0183 (16)0.0033 (12)0.0045 (12)0.0027 (12)
C100.0195 (17)0.0123 (14)0.0180 (17)0.0002 (12)0.0056 (13)0.0014 (12)
C110.0132 (15)0.0132 (14)0.0159 (16)0.0024 (11)0.0046 (12)0.0022 (11)
C120.0227 (16)0.0133 (14)0.0182 (17)0.0010 (12)0.0045 (13)0.0013 (11)
C130.0141 (16)0.0167 (14)0.0236 (18)0.0053 (11)0.0027 (13)0.0018 (12)
C140.0180 (16)0.0155 (14)0.0134 (16)0.0029 (12)0.0007 (12)0.0041 (12)
C150.0234 (17)0.0144 (14)0.0176 (16)0.0012 (12)0.0058 (13)0.0013 (11)
C160.0160 (16)0.0205 (15)0.0190 (16)0.0006 (11)0.0069 (13)0.0006 (12)
C170.0158 (16)0.0132 (14)0.0181 (16)0.0023 (11)0.0007 (12)0.0015 (12)
C180.0189 (17)0.0185 (14)0.0206 (17)0.0019 (12)0.0012 (13)0.0001 (12)
C190.0248 (17)0.0296 (16)0.0206 (17)0.0071 (13)0.0070 (13)0.0038 (13)
C200.0177 (17)0.0350 (17)0.033 (2)0.0028 (13)0.0045 (15)0.0060 (14)
C210.0247 (18)0.0319 (17)0.0254 (19)0.0011 (13)0.0031 (14)0.0006 (13)
C220.0209 (17)0.0212 (15)0.0210 (18)0.0025 (12)0.0030 (13)0.0022 (12)
N10.0139 (13)0.0151 (11)0.0190 (14)0.0002 (10)0.0026 (10)0.0026 (9)
N20.0152 (13)0.0157 (12)0.0179 (14)0.0014 (9)0.0005 (10)0.0025 (9)
N30.0185 (14)0.0302 (14)0.0137 (14)0.0002 (10)0.0041 (11)0.0032 (11)
Geometric parameters (Å, º) top
C1—N11.373 (3)C12—C131.381 (3)
C1—C61.411 (3)C12—H120.9300
C1—C21.412 (3)C13—C141.392 (3)
C2—C31.363 (3)C13—H130.9300
C2—H20.9300C14—N31.391 (3)
C3—C41.405 (3)C14—C151.394 (3)
C3—H30.9300C15—C161.375 (3)
C4—C51.364 (3)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.405 (3)C17—C181.387 (3)
C5—H50.9300C17—C221.391 (3)
C6—C71.411 (3)C17—N31.403 (3)
C7—C81.354 (3)C18—C191.378 (3)
C7—H70.9300C18—H180.9300
C8—C91.412 (3)C19—C201.380 (3)
C8—H80.9300C19—H190.9300
C9—N11.325 (3)C20—C211.384 (3)
C9—C101.464 (3)C20—H200.9300
C10—N21.275 (3)C21—C221.380 (3)
C10—H101.00 (2)C21—H210.9300
C11—C161.388 (3)C22—H220.9300
C11—C121.391 (3)N3—H3N0.89 (2)
C11—N21.415 (3)
N1—C1—C6123.0 (2)C12—C13—C14120.1 (2)
N1—C1—C2118.1 (2)C12—C13—H13119.9
C6—C1—C2118.9 (2)C14—C13—H13119.9
C3—C2—C1120.0 (2)N3—C14—C13122.8 (2)
C3—C2—H2120.0N3—C14—C15118.8 (2)
C1—C2—H2120.0C13—C14—C15118.4 (2)
C2—C3—C4121.4 (2)C16—C15—C14120.8 (2)
C2—C3—H3119.3C16—C15—H15119.6
C4—C3—H3119.3C14—C15—H15119.6
C5—C4—C3119.2 (2)C15—C16—C11121.4 (2)
C5—C4—H4120.4C15—C16—H16119.3
C3—C4—H4120.4C11—C16—H16119.3
C4—C5—C6121.1 (2)C18—C17—C22118.9 (2)
C4—C5—H5119.4C18—C17—N3122.6 (2)
C6—C5—H5119.4C22—C17—N3118.5 (2)
C5—C6—C1119.3 (2)C19—C18—C17120.3 (2)
C5—C6—C7123.4 (2)C19—C18—H18119.9
C1—C6—C7117.3 (2)C17—C18—H18119.9
C8—C7—C6119.7 (2)C18—C19—C20121.0 (3)
C8—C7—H7120.1C18—C19—H19119.5
C6—C7—H7120.1C20—C19—H19119.5
C7—C8—C9119.2 (2)C19—C20—C21118.9 (3)
C7—C8—H8120.4C19—C20—H20120.6
C9—C8—H8120.4C21—C20—H20120.6
N1—C9—C8123.7 (2)C22—C21—C20120.6 (3)
N1—C9—C10115.7 (2)C22—C21—H21119.7
C8—C9—C10120.6 (2)C20—C21—H21119.7
N2—C10—C9120.8 (2)C21—C22—C17120.4 (3)
N2—C10—H10123.5 (12)C21—C22—H22119.8
C9—C10—H10115.7 (12)C17—C22—H22119.8
C16—C11—C12117.6 (2)C9—N1—C1117.0 (2)
C16—C11—N2126.8 (2)C10—N2—C11121.4 (2)
C12—C11—N2115.6 (2)C14—N3—C17128.1 (2)
C13—C12—C11121.7 (2)C14—N3—H3N115.3 (16)
C13—C12—H12119.1C17—N3—H3N116.5 (16)
C11—C12—H12119.1
N1—C1—C2—C3177.5 (2)C13—C14—C15—C161.1 (3)
C6—C1—C2—C30.7 (3)C14—C15—C16—C111.0 (3)
C1—C2—C3—C40.0 (4)C12—C11—C16—C152.2 (3)
C2—C3—C4—C50.3 (4)N2—C11—C16—C15179.0 (2)
C3—C4—C5—C60.2 (4)C22—C17—C18—C190.5 (3)
C4—C5—C6—C10.9 (3)N3—C17—C18—C19177.8 (2)
C4—C5—C6—C7179.2 (2)C17—C18—C19—C200.1 (4)
N1—C1—C6—C5177.0 (2)C18—C19—C20—C211.0 (4)
C2—C1—C6—C51.1 (3)C19—C20—C21—C221.4 (4)
N1—C1—C6—C72.9 (3)C20—C21—C22—C170.8 (4)
C2—C1—C6—C7179.0 (2)C18—C17—C22—C210.1 (3)
C5—C6—C7—C8177.9 (2)N3—C17—C22—C21177.5 (2)
C1—C6—C7—C82.0 (3)C8—C9—N1—C12.9 (3)
C6—C7—C8—C91.0 (3)C10—C9—N1—C1177.1 (2)
C7—C8—C9—N13.7 (3)C6—C1—N1—C90.5 (3)
C7—C8—C9—C10176.3 (2)C2—C1—N1—C9178.6 (2)
N1—C9—C10—N2171.1 (2)C9—C10—N2—C11179.2 (2)
C8—C9—C10—N28.9 (3)C16—C11—N2—C100.0 (3)
C16—C11—C12—C131.5 (3)C12—C11—N2—C10178.8 (2)
N2—C11—C12—C13179.6 (2)C13—C14—N3—C1722.2 (4)
C11—C12—C13—C140.5 (3)C15—C14—N3—C17161.0 (2)
C12—C13—C14—N3178.6 (2)C18—C17—N3—C1429.4 (4)
C12—C13—C14—C151.8 (3)C22—C17—N3—C14153.2 (2)
N3—C14—C15—C16178.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg3i0.932.613.430 (2)148
C12—H12···Cg1i0.932.793.536 (2)138
C13—H13···Cg2i0.932.713.508 (3)145
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg3i0.932.613.430 (2)148
C12—H12···Cg1i0.932.793.536 (2)138
C13—H13···Cg2i0.932.713.508 (3)145
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur-208016, India, for the data collection and Musheer Ahmad for valuable discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o905-o906
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds