organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o899-o900

Crystal structure of (E)-1-(4-chloro­phen­yl)ethanone O-de­hydro­abietyloxime

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Key and Lab. on Forest Chemical Engineering, SFA, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 July 2014; accepted 8 July 2014; online 1 August 2014)

The title compound, C28H34ClNO2 {systematic name: (E)-1-(4-chloro­phen­yl)ethanone O-[(1R,4aS,10aR)-7-isopropyl-1,4a-di­methyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carbonyl]oxime}, was synthesized from de­hydro­abietic acid. In the de­hydro­abietyl moiety, the central and terminal cyclo­hexane rings display chair and half-chair conformations, respectively, and a trans-ring junction. The C=N bond is in an E conformation and the C—O—N=C torsion angle is 148.1 (5)°. No directional inter­actions except van der Waals contacts occur in the crystal structure.

1. Related literature

For the biological activity of de­hydro­abietic acid derivatives, see: Cui et al. (2013[Cui, Y. J., Rao, X. P., Shang, S. B., Song, J. & Gao, Y. Q. (2013). Lett. Drug Des. Discov. 10, 102-110.]); Rao et al. (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56,1575-1578.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429-437.]). For the crystal structures of de­hydro­abietic acid derivatives, see: Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450-o3451.], 2009[Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H34ClNO2

  • Mr = 452.01

  • Orthorhombic, P 21 21 21

  • a = 28.804 (6) Å

  • b = 6.1760 (12) Å

  • c = 13.922 (3) Å

  • V = 2476.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.948, Tmax = 0.982

  • 5186 measured reflections

  • 4554 independent reflections

  • 2566 reflections with I > 2σ(I)

  • Rint = 0.099

  • 3 standard reflections every 200 reflections intensity decay: 1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.205

  • S = 1.00

  • 4554 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1911 Friedel pairs

  • Absolute structure parameter: 0.05 (16)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the biological activity of dehydroabietic acid derivatives, see: Cui et al. (2013); Rao et al. (2008); Sepulveda et al. (2005). For the crystal structures of dehydroabietic acid derivatives, see: Rao et al. (2006, 2009).

Experimental top

A solution of dehydroabietyl chloride in 15 ml CH2Cl2 solution were added dropwise to a solution of 60 mmol oxime and 60 mmol triethylamine in 40 ml CH2Cl2 solution within 30 min between the temperature 0–5 °C. The reaction mixture was allowed to stand at room temperature over 2 h and washed with water, then dried with anhydrous MgSO4. The residue were purified by silica gel chromatography.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C,N,H) for all other H atoms. Methyl groups were refined in orientation (AFIX 137 of program SHELXL97.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
(E)-1-(4-Chlorophenyl)ethanone O-dehydroabietyloxime top
Crystal data top
C28H34ClNO2F(000) = 968
Mr = 452.01Dx = 1.212 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 28.804 (6) Åθ = 9–13°
b = 6.1760 (12) ŵ = 0.18 mm1
c = 13.922 (3) ÅT = 293 K
V = 2476.6 (9) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2566 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 3434
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.948, Tmax = 0.982l = 016
5186 measured reflections3 standard reflections every 200 reflections
4554 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4554 reflectionsΔρmax = 0.18 e Å3
289 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1911 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (16)
Crystal data top
C28H34ClNO2V = 2476.6 (9) Å3
Mr = 452.01Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 28.804 (6) ŵ = 0.18 mm1
b = 6.1760 (12) ÅT = 293 K
c = 13.922 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2566 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.099
Tmin = 0.948, Tmax = 0.9823 standard reflections every 200 reflections
5186 measured reflections intensity decay: 1%
4554 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.205Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.23 e Å3
4554 reflectionsAbsolute structure: Flack (1983), 1911 Friedel pairs
289 parametersAbsolute structure parameter: 0.05 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.59358 (6)0.1759 (3)0.58245 (11)0.0903 (6)
N0.41858 (16)0.1075 (8)0.2777 (4)0.0786 (15)
O10.34454 (14)0.3392 (7)0.2493 (3)0.0917 (14)
C10.0874 (3)0.9817 (14)0.1786 (7)0.143 (4)
H1A0.05981.06540.18900.214*
H1B0.10881.06370.14030.214*
H1C0.10140.94790.23930.214*
O20.38242 (13)0.0305 (7)0.2150 (3)0.0774 (12)
C20.0380 (2)0.6446 (14)0.1772 (5)0.106 (2)
H2A0.03030.51750.14090.159*
H2B0.01090.73340.18440.159*
H2C0.04920.60280.23940.159*
C30.07480 (18)0.7692 (9)0.1256 (4)0.0707 (16)
H3A0.06170.81100.06340.085*
C40.11734 (16)0.6380 (9)0.1050 (4)0.0564 (13)
C50.13208 (17)0.5982 (9)0.0124 (4)0.0574 (13)
H5A0.11540.65680.03860.069*
C60.17069 (17)0.4744 (8)0.0067 (3)0.0527 (12)
H6A0.17990.45520.07010.063*
C70.19647 (15)0.3765 (8)0.0666 (3)0.0463 (11)
C80.18179 (17)0.4124 (8)0.1606 (3)0.0525 (13)
C90.14295 (17)0.5418 (9)0.1772 (4)0.0574 (13)
H9A0.13380.56450.24040.069*
C100.23686 (16)0.2213 (8)0.0425 (3)0.0480 (11)
C110.26936 (15)0.2185 (8)0.1322 (3)0.0492 (11)
H11A0.27720.37070.14400.059*
C120.24209 (17)0.1469 (9)0.2209 (3)0.0560 (13)
H12A0.22650.01080.20790.067*
H12B0.26320.12520.27440.067*
C130.20670 (18)0.3184 (11)0.2463 (3)0.0711 (16)
H13A0.18390.25580.28950.085*
H13B0.22220.43460.28050.085*
C140.26495 (17)0.3094 (9)0.0430 (3)0.0589 (13)
H14A0.24620.30090.10070.071*
H14B0.27220.46060.03170.071*
C150.30964 (17)0.1850 (10)0.0586 (3)0.0646 (14)
H15A0.30240.03540.07370.077*
H15B0.32620.24630.11290.077*
C160.34032 (18)0.1924 (10)0.0290 (3)0.0631 (14)
H16A0.34960.34120.04060.076*
H16B0.36820.10910.01650.076*
C170.31646 (17)0.1025 (7)0.1202 (3)0.0487 (11)
C180.21533 (19)0.0064 (8)0.0147 (4)0.0611 (14)
H18A0.19820.05050.06820.092*
H18B0.23940.09360.00290.092*
H18C0.19480.02720.03880.092*
C190.3132 (2)0.1455 (8)0.1193 (4)0.0704 (15)
H19A0.34370.20600.11180.106*
H19B0.29390.19090.06680.106*
H19C0.29990.19480.17870.106*
C200.34771 (18)0.1739 (10)0.2020 (4)0.0627 (14)
C210.43576 (18)0.0547 (9)0.3230 (4)0.0562 (13)
C220.4184 (2)0.2817 (10)0.3171 (5)0.0831 (19)
H22A0.39260.28810.27340.125*
H22B0.40850.32870.37960.125*
H22C0.44280.37450.29450.125*
C230.47602 (16)0.0019 (9)0.3849 (3)0.0551 (12)
C240.4921 (2)0.1439 (10)0.4542 (4)0.0766 (17)
H24A0.47770.27800.46050.092*
C250.5287 (2)0.0937 (11)0.5145 (4)0.0809 (19)
H25A0.53890.19220.56040.097*
C260.54968 (19)0.1069 (11)0.5048 (4)0.0647 (15)
C270.53477 (18)0.2524 (11)0.4368 (4)0.0698 (16)
H27A0.54910.38680.43140.084*
C280.49870 (18)0.1988 (9)0.3768 (4)0.0653 (14)
H28A0.48910.29680.33010.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0746 (9)0.1184 (14)0.0778 (10)0.0015 (10)0.0227 (8)0.0008 (10)
N0.069 (3)0.072 (3)0.095 (4)0.004 (3)0.039 (3)0.005 (3)
O10.080 (3)0.081 (3)0.113 (3)0.019 (2)0.041 (3)0.049 (3)
C10.094 (5)0.082 (5)0.253 (11)0.014 (5)0.004 (6)0.073 (7)
O20.070 (2)0.062 (2)0.099 (3)0.011 (2)0.036 (2)0.017 (2)
C20.069 (4)0.109 (6)0.139 (6)0.014 (4)0.026 (4)0.023 (5)
C30.064 (3)0.067 (4)0.080 (4)0.011 (3)0.000 (3)0.003 (3)
C40.050 (3)0.062 (3)0.057 (3)0.001 (3)0.004 (2)0.004 (3)
C50.054 (3)0.064 (3)0.054 (3)0.001 (3)0.014 (2)0.000 (3)
C60.060 (3)0.059 (3)0.039 (3)0.003 (3)0.006 (2)0.005 (2)
C70.045 (2)0.054 (3)0.040 (3)0.001 (2)0.0046 (19)0.003 (2)
C80.052 (3)0.066 (3)0.040 (3)0.011 (3)0.003 (2)0.003 (2)
C90.056 (3)0.073 (3)0.044 (3)0.001 (3)0.001 (2)0.004 (3)
C100.055 (3)0.052 (3)0.038 (2)0.007 (2)0.000 (2)0.002 (2)
C110.047 (2)0.055 (3)0.046 (3)0.003 (2)0.003 (2)0.001 (2)
C120.062 (3)0.059 (3)0.046 (3)0.005 (3)0.003 (2)0.009 (2)
C130.071 (3)0.099 (4)0.044 (3)0.021 (4)0.006 (3)0.009 (3)
C140.063 (3)0.074 (3)0.040 (3)0.002 (3)0.001 (2)0.005 (3)
C150.060 (3)0.074 (4)0.059 (3)0.005 (3)0.014 (3)0.001 (3)
C160.057 (3)0.070 (3)0.063 (3)0.001 (3)0.005 (3)0.007 (3)
C170.050 (3)0.042 (3)0.054 (3)0.006 (2)0.006 (2)0.005 (2)
C180.071 (3)0.049 (3)0.063 (3)0.013 (3)0.011 (3)0.008 (2)
C190.079 (4)0.043 (3)0.089 (4)0.002 (3)0.015 (3)0.010 (3)
C200.055 (3)0.067 (4)0.065 (3)0.007 (3)0.009 (3)0.006 (3)
C210.055 (3)0.062 (3)0.052 (3)0.002 (3)0.000 (2)0.001 (3)
C220.079 (4)0.071 (4)0.099 (5)0.021 (3)0.014 (3)0.027 (3)
C230.049 (3)0.064 (3)0.053 (3)0.004 (3)0.004 (2)0.003 (3)
C240.086 (4)0.070 (4)0.074 (4)0.005 (4)0.017 (3)0.012 (3)
C250.091 (5)0.077 (4)0.075 (4)0.009 (4)0.025 (4)0.015 (3)
C260.058 (3)0.084 (4)0.052 (3)0.011 (3)0.003 (3)0.002 (3)
C270.053 (3)0.082 (4)0.074 (4)0.011 (3)0.008 (3)0.004 (3)
C280.061 (3)0.065 (3)0.070 (3)0.004 (3)0.008 (3)0.020 (3)
Geometric parameters (Å, º) top
Cl—C261.717 (6)C13—H13A0.9700
N—C211.284 (7)C13—H13B0.9700
N—O21.441 (5)C14—C151.515 (7)
O1—C201.218 (6)C14—H14A0.9700
C1—C31.549 (9)C14—H14B0.9700
C1—H1A0.9600C15—C161.507 (7)
C1—H1B0.9600C15—H15A0.9700
C1—H1C0.9600C15—H15B0.9700
O2—C201.348 (6)C16—C171.547 (7)
C2—C31.493 (8)C16—H16A0.9700
C2—H2A0.9600C16—H16B0.9700
C2—H2B0.9600C17—C201.517 (7)
C2—H2C0.9600C17—C191.535 (6)
C3—C41.497 (7)C18—H18A0.9600
C3—H3A0.9800C18—H18B0.9600
C4—C51.379 (7)C18—H18C0.9600
C4—C91.381 (7)C19—H19A0.9600
C5—C61.376 (7)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.399 (6)C21—C231.481 (7)
C6—H6A0.9300C21—C221.491 (8)
C7—C81.393 (6)C22—H22A0.9600
C7—C101.544 (7)C22—H22B0.9600
C8—C91.394 (7)C22—H22C0.9600
C8—C131.509 (6)C23—C241.383 (7)
C9—H9A0.9300C23—C281.406 (7)
C10—C181.515 (7)C24—C251.383 (8)
C10—C141.538 (6)C24—H24A0.9300
C10—C111.561 (6)C25—C261.385 (9)
C11—C121.528 (6)C25—H25A0.9300
C11—C171.543 (7)C26—C271.374 (8)
C11—H11A0.9800C27—C281.374 (7)
C12—C131.512 (7)C27—H27A0.9300
C12—H12A0.9700C28—H28A0.9300
C12—H12B0.9700
C21—N—O2108.6 (5)C10—C14—H14A109.2
C3—C1—H1A109.5C15—C14—H14B109.2
C3—C1—H1B109.5C10—C14—H14B109.2
H1A—C1—H1B109.5H14A—C14—H14B107.9
C3—C1—H1C109.5C16—C15—C14111.5 (4)
H1A—C1—H1C109.5C16—C15—H15A109.3
H1B—C1—H1C109.5C14—C15—H15A109.3
C20—O2—N113.6 (4)C16—C15—H15B109.3
C3—C2—H2A109.5C14—C15—H15B109.3
C3—C2—H2B109.5H15A—C15—H15B108.0
H2A—C2—H2B109.5C15—C16—C17113.1 (4)
C3—C2—H2C109.5C15—C16—H16A108.9
H2A—C2—H2C109.5C17—C16—H16A108.9
H2B—C2—H2C109.5C15—C16—H16B108.9
C2—C3—C4113.2 (5)C17—C16—H16B108.9
C2—C3—C1112.0 (6)H16A—C16—H16B107.8
C4—C3—C1111.0 (5)C20—C17—C19109.5 (4)
C2—C3—H3A106.7C20—C17—C11107.8 (4)
C4—C3—H3A106.7C19—C17—C11114.2 (4)
C1—C3—H3A106.7C20—C17—C16104.4 (4)
C5—C4—C9116.1 (5)C19—C17—C16112.2 (4)
C5—C4—C3121.9 (5)C11—C17—C16108.2 (4)
C9—C4—C3122.0 (5)C10—C18—H18A109.5
C6—C5—C4121.9 (5)C10—C18—H18B109.5
C6—C5—H5A119.0H18A—C18—H18B109.5
C4—C5—H5A119.0C10—C18—H18C109.5
C5—C6—C7121.9 (5)H18A—C18—H18C109.5
C5—C6—H6A119.0H18B—C18—H18C109.5
C7—C6—H6A119.0C17—C19—H19A109.5
C8—C7—C6117.1 (4)C17—C19—H19B109.5
C8—C7—C10122.1 (4)H19A—C19—H19B109.5
C6—C7—C10120.7 (4)C17—C19—H19C109.5
C7—C8—C9119.4 (4)H19A—C19—H19C109.5
C7—C8—C13122.5 (4)H19B—C19—H19C109.5
C9—C8—C13118.1 (4)O1—C20—O2122.3 (5)
C4—C9—C8123.7 (5)O1—C20—C17127.2 (5)
C4—C9—H9A118.2O2—C20—C17110.4 (5)
C8—C9—H9A118.2N—C21—C23114.6 (5)
C18—C10—C14109.1 (4)N—C21—C22125.3 (5)
C18—C10—C7106.9 (4)C23—C21—C22120.2 (5)
C14—C10—C7110.2 (4)C21—C22—H22A109.5
C18—C10—C11116.1 (4)C21—C22—H22B109.5
C14—C10—C11107.9 (4)H22A—C22—H22B109.5
C7—C10—C11106.5 (3)C21—C22—H22C109.5
C12—C11—C17113.9 (4)H22A—C22—H22C109.5
C12—C11—C10109.9 (4)H22B—C22—H22C109.5
C17—C11—C10116.5 (4)C24—C23—C28117.4 (5)
C12—C11—H11A105.1C24—C23—C21121.9 (5)
C17—C11—H11A105.1C28—C23—C21120.8 (5)
C10—C11—H11A105.1C25—C24—C23122.4 (6)
C13—C12—C11109.5 (4)C25—C24—H24A118.8
C13—C12—H12A109.8C23—C24—H24A118.8
C11—C12—H12A109.8C24—C25—C26118.3 (6)
C13—C12—H12B109.8C24—C25—H25A120.8
C11—C12—H12B109.8C26—C25—H25A120.8
H12A—C12—H12B108.2C27—C26—C25121.0 (5)
C8—C13—C12113.9 (4)C27—C26—Cl120.1 (5)
C8—C13—H13A108.8C25—C26—Cl118.8 (5)
C12—C13—H13A108.8C28—C27—C26119.9 (6)
C8—C13—H13B108.8C28—C27—H27A120.1
C12—C13—H13B108.8C26—C27—H27A120.1
H13A—C13—H13B107.7C27—C28—C23121.0 (5)
C15—C14—C10112.2 (4)C27—C28—H28A119.5
C15—C14—H14A109.2C23—C28—H28A119.5
C21—N—O2—C20148.1 (5)C11—C10—C14—C1554.1 (5)
C2—C3—C4—C5118.1 (6)C10—C14—C15—C1658.8 (6)
C1—C3—C4—C5115.0 (7)C14—C15—C16—C1757.7 (6)
C2—C3—C4—C959.0 (7)C12—C11—C17—C2067.0 (5)
C1—C3—C4—C968.0 (8)C10—C11—C17—C20163.4 (4)
C9—C4—C5—C61.6 (7)C12—C11—C17—C1954.9 (6)
C3—C4—C5—C6178.8 (5)C10—C11—C17—C1974.7 (5)
C4—C5—C6—C71.9 (8)C12—C11—C17—C16179.3 (4)
C5—C6—C7—C81.0 (7)C10—C11—C17—C1651.1 (5)
C5—C6—C7—C10174.3 (4)C15—C16—C17—C20166.7 (5)
C6—C7—C8—C90.1 (7)C15—C16—C17—C1974.9 (6)
C10—C7—C8—C9175.3 (4)C15—C16—C17—C1152.1 (6)
C6—C7—C8—C13179.4 (5)N—O2—C20—O19.4 (8)
C10—C7—C8—C135.4 (8)N—O2—C20—C17168.2 (4)
C5—C4—C9—C80.5 (8)C19—C17—C20—O1147.7 (6)
C3—C4—C9—C8177.7 (5)C11—C17—C20—O123.0 (8)
C7—C8—C9—C40.3 (8)C16—C17—C20—O191.9 (7)
C13—C8—C9—C4179.6 (5)C19—C17—C20—O234.8 (6)
C8—C7—C10—C1897.1 (5)C11—C17—C20—O2159.5 (4)
C6—C7—C10—C1877.9 (5)C16—C17—C20—O285.6 (5)
C8—C7—C10—C14144.4 (5)O2—N—C21—C23175.4 (4)
C6—C7—C10—C1440.6 (6)O2—N—C21—C224.5 (8)
C8—C7—C10—C1127.6 (6)N—C21—C23—C24165.3 (5)
C6—C7—C10—C11157.4 (4)C22—C21—C23—C2414.8 (8)
C18—C10—C11—C1261.1 (5)N—C21—C23—C2813.0 (7)
C14—C10—C11—C12176.1 (4)C22—C21—C23—C28167.0 (5)
C7—C10—C11—C1257.8 (5)C28—C23—C24—C250.4 (8)
C18—C10—C11—C1770.3 (5)C21—C23—C24—C25177.9 (5)
C14—C10—C11—C1752.5 (5)C23—C24—C25—C260.3 (9)
C7—C10—C11—C17170.8 (4)C24—C25—C26—C270.3 (9)
C17—C11—C12—C13159.6 (4)C24—C25—C26—Cl177.3 (5)
C10—C11—C12—C1367.6 (5)C25—C26—C27—C280.5 (9)
C7—C8—C13—C1212.1 (8)Cl—C26—C27—C28178.0 (4)
C9—C8—C13—C12168.6 (5)C26—C27—C28—C231.2 (8)
C11—C12—C13—C842.0 (6)C24—C23—C28—C271.2 (8)
C18—C10—C14—C1572.9 (5)C21—C23—C28—C27177.1 (5)
C7—C10—C14—C15170.0 (4)

Experimental details

Crystal data
Chemical formulaC28H34ClNO2
Mr452.01
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)28.804 (6), 6.1760 (12), 13.922 (3)
V3)2476.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.948, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5186, 4554, 2566
Rint0.099
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.205, 1.00
No. of reflections4554
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 1911 Friedel pairs
Absolute structure parameter0.05 (16)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was financially supported by grants from the Natural Science Foundation of Jiangsu Province (BK2011112).

References

First citationCui, Y. J., Rao, X. P., Shang, S. B., Song, J. & Gao, Y. Q. (2013). Lett. Drug Des. Discov. 10, 102–110.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56,1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o899-o900
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds