organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o909-o910

Crystal structure of (E)-1-(2-nitro­benzyl­­idene)-2,2-di­phenyl­hydrazine

aFacultad de Química, Universidad Nacional Autónoma de México, 04510, México DF, Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla 72570, Puebla, Pue., Mexico
*Correspondence e-mail: mfa@unam.mx

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 July 2014; accepted 10 July 2014; online 1 August 2014)

The title compound, C19H15N3O2, shows an E conformation of the imine bond. The dihedral angle between the planes of the phenyl rings in the di­phenyl­hydrazine groups is 88.52 (4)°. The 2-nitro­benzene ring shows a torsion angle of 10.17 (8)° with the C=N—N plane. A short intra­molecular C—H⋯O contact occurs. In the crystal, only van der Waals contacts occur between the mol­ecules.

1. Related literature

For background to hydrazide–hydrazone derivatives and their various biological activities, see: Sztanke et al. (2007[Sztanke, K., Pasterhak, K., Rzymowska, J., Sztanke, M. & Kandefer-Szerszen, M. (2007). Eur. J. Med. Chem. 43, 404-419.]); Al-Macrosaur et al. (2007[Al-Macrosaur, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472-6475.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.]); Smalley et al. (2006[Smalley, T. L. Jr, Peat, A. J., Boucheron, J. A., Dickerson, S., Garrido, D., Preugschat, F., Schweiker, S. L., Thomson, S. A. & Wang, T. Y. (2006). Bioorg. Med. Chem. Lett. 16, 2091-2094.]). For a related structure, see: Mendoza et al. (2012[Mendoza, A., Meléndrez-Luevano, R., Cabrera-Vivas, B. M., Acoltzi-X, C. & Flores-Alamo, M. (2012). Acta Cryst. E68, o3238.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H15N3O2

  • Mr = 317.34

  • Monoclinic, P 21 /n

  • a = 11.8536 (5) Å

  • b = 12.4293 (3) Å

  • c = 11.9492 (5) Å

  • β = 118.584 (5)°

  • V = 1545.92 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 140 K

  • 0.59 × 0.49 × 0.27 mm

2.2. Data collection

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.961, Tmax = 0.977

  • 12199 measured reflections

  • 3757 independent reflections

  • 3057 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.03

  • 3757 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.95 2.27 2.7822 (15) 113

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hydrazides and hydrazones are present in many of the bioactive heterocyclic compounds that are of great interest because of their diverse biological and clinical applications, creating interest in researchers who have synthesized a variety of hydrazide-hydrazones derivatives and screened them for their various biological activities viz anticancer (Sztanke et al. 2007), anti-HIV (Al-Macrosaur et al. 2007), antimycobacterial, anti-inflammatory (Roma et al. 2000), antidiabetic, antimicrobial, as well antimalarial activities (Smalley et al. 2006). In the title compound C19H15N3O2, the discrete unit consist of one molecule showing an E configuration with respect to C=N for diphenylhydrazine group opposite to o-nitrophenyl ring (Fig. 1). The dihedral angle for the phenyl rings C1—C6 and C7—C12 is 88.52 (4)° very close to orthogonal form and this value is slightly higher than reported for positional isomer (E)-1-(4-nitrobenzylidene)-2,2-diphenylhydrazine (Mendoza et al. 2012). The dihedral angle for ortho-nitrophenyl ring and C=N—N plane is 10.17 (8) °, which evidences the coplanarity between these groups. The imine N2—C13, 1.2871 (15) Å bond distance is typical C=N bond. In the crystal array one intramolecular interaction C13—H13···O1 (2.27 Å) of type hydrogen bond is observed, and in the crystal packing intermolecular contacts of type van der Waals are observed growing along the a, b and c axes, resulting in a complex supramolecular array (Fig. 2).

Related literature top

For background to hydrazide–hydrazone derivatives and their various biological activities, see: Sztanke et al. (2007); Al-Macrosaur et al. (2007); Roma et al. (2000); Smalley et al. (2006). For a related structure, see: Mendoza et al. (2012).

Experimental top

228 mg (1.24 mmol) diphenylhydrazine were dissolved in ethanol and acetic acid (0.5 ml) was slowly added to this solution while stirring, 300 mg (1.24 mmol) of 2-nitrobenzaldehyde was added drop by drop into the above solution strongly stirring and the resulting mixture was kept at room temperature until it became orange transparent solution. After one and a half hours an orange solution precipitated. The reaction was monitored by TLC, aluminium Alugram Sil G/UV254. The mixture was separated with filtration in vacuo system and the precipitate was washed three times with cold methanol. Recrystallization was performed three times with ethanol, to obtain orange blocks (yield 91%, mp. 133–135°C). FT·IR (film): (cm-1):3026 ν(C—H), 1577 ν(C=N), 1334,ν (NO2). 1H NMR (400 MHz, (CD3)2CO: (d/ p.p.m., J/Hz):8.28 (dd,1H,C3), 7.91 (dd,1H,C5), 7.72 (m,1H,C4), 7.60 (s,1H,C=N),7.52(d, J = 1.44, 1H, C6),7.48 (m, 4H,C2') 7.25 (m,6H,C4', C2'). 13C NMR (400 MHz, (CD3)2CO): (d/ p.p.m.):143.16 (C2), 132.99 (C1'), 132.97 (C4), 130.41 (C=N), 130.13 (C6), 129.99 (C3'), 128.40 (C1), 127.72 (C3), 125.26 (C4'), 124.49 (C5), 122.41 (C2'). MS—EI: m/z 317.12.C19H15N3O2.

Refinement top

H atoms bonded to C atoms were placed in geometrical idealized positions and were refined as riding on their parent atoms, with C—H = 0.95 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. The crystal packing in the title compound.
(E)-2-(2-Nitrobenzylidene)-2,2-diphenylhydrazine top
Crystal data top
C19H15N3O2F(000) = 664
Mr = 317.34Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6418 reflections
a = 11.8536 (5) Åθ = 3.7–29.6°
b = 12.4293 (3) ŵ = 0.09 mm1
c = 11.9492 (5) ÅT = 140 K
β = 118.584 (5)°Block, yellow
V = 1545.92 (12) Å30.59 × 0.49 × 0.27 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
3757 independent reflections
Graphite monochromator3057 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.023
ω scansθmax = 29.6°, θmin = 3.7°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
h = 1515
Tmin = 0.961, Tmax = 0.977k = 1713
12199 measured reflectionsl = 1216
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3936P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.19 e Å3
3757 reflectionsΔρmin = 0.29 e Å3
217 parameters
Crystal data top
C19H15N3O2V = 1545.92 (12) Å3
Mr = 317.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8536 (5) ŵ = 0.09 mm1
b = 12.4293 (3) ÅT = 140 K
c = 11.9492 (5) Å0.59 × 0.49 × 0.27 mm
β = 118.584 (5)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
3757 independent reflections
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
3057 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.977Rint = 0.023
12199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3757 reflectionsΔρmin = 0.29 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.11331 (9)0.25147 (8)0.92802 (9)0.0231 (2)
N10.22974 (9)0.29935 (8)0.97008 (10)0.0258 (2)
C10.23071 (11)0.41296 (9)0.97290 (10)0.0222 (2)
C60.11903 (11)0.47065 (9)0.94355 (11)0.0241 (2)
H60.0420.43350.92510.029*
C130.10253 (11)0.14893 (9)0.91111 (11)0.0228 (2)
H130.17430.10530.92630.027*
C50.12018 (12)0.58203 (10)0.94130 (11)0.0269 (3)
H50.04340.62060.92030.032*
C180.18121 (12)0.04581 (10)0.79564 (12)0.0306 (3)
H180.19980.11940.77280.037*
C140.02595 (11)0.10233 (9)0.86714 (10)0.0212 (2)
C40.23172 (12)0.63796 (10)0.96930 (12)0.0286 (3)
H40.23150.71430.96550.034*
C90.53623 (12)0.14688 (10)1.11874 (12)0.0304 (3)
H90.59810.12241.20070.037*
C150.12374 (11)0.16652 (10)0.86682 (11)0.0256 (3)
H150.10550.23960.89230.031*
C120.35602 (11)0.21828 (10)0.87944 (11)0.0267 (3)
H120.29420.24280.79740.032*
C70.34034 (10)0.23976 (9)0.98487 (11)0.0222 (2)
C20.34400 (12)0.46897 (10)1.00538 (13)0.0319 (3)
H20.42160.43081.02920.038*
C80.42978 (11)0.20381 (10)1.10458 (11)0.0275 (3)
H80.41820.21811.17650.033*
O20.00953 (12)0.17689 (8)0.82260 (11)0.0517 (3)
N30.02964 (11)0.08055 (9)0.81874 (10)0.0347 (3)
C190.06012 (11)0.00479 (9)0.82864 (11)0.0243 (2)
C160.24502 (12)0.12733 (11)0.83091 (12)0.0307 (3)
H160.30910.17380.82990.037*
C100.55296 (12)0.12539 (10)1.01392 (13)0.0289 (3)
H100.62620.08651.02390.035*
C110.46250 (12)0.16084 (10)0.89447 (12)0.0302 (3)
H110.47350.14570.82240.036*
C170.27406 (12)0.02027 (11)0.79614 (12)0.0327 (3)
H170.35720.00710.77290.039*
O10.11844 (10)0.04545 (9)0.80403 (12)0.0537 (3)
C30.34333 (13)0.58067 (11)1.00287 (14)0.0341 (3)
H30.42080.61831.02460.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0200 (5)0.0234 (5)0.0265 (5)0.0030 (4)0.0115 (4)0.0025 (4)
N10.0186 (5)0.0219 (5)0.0368 (6)0.0018 (4)0.0132 (4)0.0053 (4)
C10.0231 (6)0.0214 (6)0.0236 (6)0.0019 (4)0.0125 (4)0.0041 (4)
C60.0207 (5)0.0248 (6)0.0261 (6)0.0023 (4)0.0107 (4)0.0017 (4)
C130.0219 (6)0.0217 (6)0.0240 (6)0.0016 (4)0.0102 (4)0.0004 (4)
C50.0259 (6)0.0259 (6)0.0285 (6)0.0030 (5)0.0128 (5)0.0004 (5)
C180.0324 (7)0.0234 (6)0.0277 (6)0.0069 (5)0.0077 (5)0.0010 (5)
C140.0228 (5)0.0211 (5)0.0190 (5)0.0007 (4)0.0093 (4)0.0006 (4)
C40.0352 (7)0.0209 (6)0.0340 (7)0.0026 (5)0.0200 (6)0.0040 (5)
C90.0222 (6)0.0298 (7)0.0296 (7)0.0013 (5)0.0047 (5)0.0030 (5)
C150.0250 (6)0.0237 (6)0.0300 (6)0.0029 (5)0.0147 (5)0.0039 (4)
C120.0238 (6)0.0301 (6)0.0245 (6)0.0031 (5)0.0102 (5)0.0033 (5)
C70.0183 (5)0.0192 (5)0.0294 (6)0.0025 (4)0.0117 (4)0.0035 (4)
C20.0250 (6)0.0274 (6)0.0483 (8)0.0028 (5)0.0216 (6)0.0088 (5)
C80.0260 (6)0.0303 (6)0.0248 (6)0.0040 (5)0.0110 (5)0.0045 (5)
O20.0655 (8)0.0209 (5)0.0550 (7)0.0089 (5)0.0178 (6)0.0016 (4)
N30.0321 (6)0.0263 (6)0.0322 (6)0.0054 (5)0.0045 (4)0.0066 (4)
C190.0259 (6)0.0213 (5)0.0210 (5)0.0012 (5)0.0074 (4)0.0007 (4)
C160.0251 (6)0.0342 (7)0.0353 (7)0.0010 (5)0.0165 (5)0.0025 (5)
C100.0208 (6)0.0234 (6)0.0418 (7)0.0023 (5)0.0145 (5)0.0001 (5)
C110.0299 (6)0.0326 (7)0.0335 (7)0.0012 (5)0.0195 (5)0.0016 (5)
C170.0251 (6)0.0369 (7)0.0330 (7)0.0095 (5)0.0113 (5)0.0003 (5)
O10.0338 (6)0.0464 (6)0.0806 (8)0.0013 (5)0.0271 (6)0.0269 (6)
C30.0310 (7)0.0294 (7)0.0502 (8)0.0093 (5)0.0261 (6)0.0103 (6)
Geometric parameters (Å, º) top
N2—C131.2871 (15)C9—H90.95
N2—N11.3593 (13)C15—C161.3776 (17)
N1—C11.4125 (15)C15—H150.95
N1—C71.4412 (14)C12—C71.3845 (16)
C1—C21.3928 (16)C12—C111.3849 (17)
C1—C61.3948 (16)C12—H120.95
C6—C51.3849 (17)C7—C81.3851 (16)
C6—H60.95C2—C31.3887 (18)
C13—C141.4714 (15)C2—H20.95
C13—H130.95C8—H80.95
C5—C41.3856 (17)O2—N31.2261 (15)
C5—H50.95N3—O11.2274 (16)
C18—C171.3757 (19)N3—C191.4674 (16)
C18—C191.3907 (17)C16—C171.3874 (19)
C18—H180.95C16—H160.95
C14—C191.4036 (16)C10—C111.3844 (18)
C14—C151.4057 (16)C10—H100.95
C4—C31.3821 (18)C11—H110.95
C4—H40.95C17—H170.95
C9—C101.3845 (18)C3—H30.95
C9—C81.3846 (17)
C13—N2—N1119.91 (10)C7—C12—H12120.3
N2—N1—C1116.22 (9)C11—C12—H12120.3
N2—N1—C7121.56 (9)C12—C7—C8120.52 (11)
C1—N1—C7120.95 (9)C12—C7—N1119.85 (10)
C2—C1—C6119.06 (11)C8—C7—N1119.63 (10)
C2—C1—N1120.14 (10)C3—C2—C1119.92 (12)
C6—C1—N1120.80 (10)C3—C2—H2120
C5—C6—C1120.12 (11)C1—C2—H2120
C5—C6—H6119.9C9—C8—C7119.57 (11)
C1—C6—H6119.9C9—C8—H8120.2
N2—C13—C14116.99 (10)C7—C8—H8120.2
N2—C13—H13121.5O2—N3—O1123.23 (12)
C14—C13—H13121.5O2—N3—C19117.53 (12)
C6—C5—C4120.92 (11)O1—N3—C19119.22 (11)
C6—C5—H5119.5C18—C19—C14122.52 (11)
C4—C5—H5119.5C18—C19—N3115.57 (11)
C17—C18—C19119.94 (11)C14—C19—N3121.90 (11)
C17—C18—H18120C15—C16—C17120.31 (12)
C19—C18—H18120C15—C16—H16119.8
C19—C14—C15115.42 (10)C17—C16—H16119.8
C19—C14—C13125.28 (10)C11—C10—C9119.72 (11)
C15—C14—C13119.26 (10)C11—C10—H10120.1
C3—C4—C5118.81 (11)C9—C10—H10120.1
C3—C4—H4120.6C10—C11—C12120.40 (11)
C5—C4—H4120.6C10—C11—H11119.8
C10—C9—C8120.30 (11)C12—C11—H11119.8
C10—C9—H9119.8C18—C17—C16119.32 (12)
C8—C9—H9119.8C18—C17—H17120.3
C16—C15—C14122.45 (11)C16—C17—H17120.3
C16—C15—H15118.8C4—C3—C2121.07 (12)
C14—C15—H15118.8C4—C3—H3119.5
C7—C12—C11119.48 (11)C2—C3—H3119.5
C13—N2—N1—C1173.38 (10)N1—C1—C2—C3177.32 (11)
C13—N2—N1—C76.11 (16)C10—C9—C8—C70.38 (18)
N2—N1—C1—C2175.12 (10)C12—C7—C8—C90.64 (18)
C7—N1—C1—C27.77 (16)N1—C7—C8—C9179.78 (11)
N2—N1—C1—C64.95 (15)C17—C18—C19—C142.08 (18)
C7—N1—C1—C6172.30 (10)C17—C18—C19—N3177.01 (11)
C2—C1—C6—C52.89 (17)C15—C14—C19—C181.66 (16)
N1—C1—C6—C5177.17 (11)C13—C14—C19—C18175.84 (11)
N1—N2—C13—C14179.18 (9)C15—C14—C19—N3177.37 (10)
C1—C6—C5—C40.71 (17)C13—C14—C19—N35.13 (17)
N2—C13—C14—C19171.78 (11)O2—N3—C19—C1822.36 (16)
N2—C13—C14—C1510.81 (16)O1—N3—C19—C18155.89 (12)
C6—C5—C4—C31.63 (18)O2—N3—C19—C14158.54 (11)
C19—C14—C15—C160.18 (17)O1—N3—C19—C1423.21 (17)
C13—C14—C15—C16177.84 (11)C14—C15—C16—C171.60 (19)
C11—C12—C7—C80.34 (18)C8—C9—C10—C110.18 (19)
C11—C12—C7—N1179.92 (11)C9—C10—C11—C120.48 (19)
N2—N1—C7—C1280.11 (14)C7—C12—C11—C100.23 (19)
C1—N1—C7—C1286.56 (14)C19—C18—C17—C160.59 (19)
N2—N1—C7—C899.47 (13)C15—C16—C17—C181.19 (19)
C1—N1—C7—C893.86 (13)C5—C4—C3—C21.77 (19)
C6—C1—C2—C32.75 (18)C1—C2—C3—C40.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.952.272.7822 (15)113
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.952.272.7822 (15)113
 

Acknowledgements

We are grateful for financial support from projects CAVB-NAT-14 G, VIEP, BUAP and MELR-NAT-14 G. MFA thanks Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Macrosaur, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472–6475.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendoza, A., Meléndrez-Luevano, R., Cabrera-Vivas, B. M., Acoltzi-X, C. & Flores-Alamo, M. (2012). Acta Cryst. E68, o3238.  CSD CrossRef IUCr Journals Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmalley, T. L. Jr, Peat, A. J., Boucheron, J. A., Dickerson, S., Garrido, D., Preugschat, F., Schweiker, S. L., Thomson, S. A. & Wang, T. Y. (2006). Bioorg. Med. Chem. Lett. 16, 2091–2094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSztanke, K., Pasterhak, K., Rzymowska, J., Sztanke, M. & Kandefer-Szerszen, M. (2007). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o909-o910
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds