organic compounds
of 4-sulfamoylanilinium dihydrogen phosphate
aDepartment of Physics, Devangar Arts College, Aruppukottai 626 101, Tamil Nadu, India, and bDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in
In the 6H9N2O2S+·H2PO4−, the sulfomylalinium cations and the dihydrogen phosphate anions form independent [100] chains through Ns—H⋯O (s = sulfamoyl) and O—H⋯O hydrogen bonds, respectively. The chains are cross-linked by Na—H⋯O (a = amine) hydrogen bonds, generating (010) sheets. Two C—H⋯O hydrogen bonds involving diametrically opposite C atoms in the benzene ring of the cation as donors form chains parallel to [202] in which P=O and P—OH groups are acceptors. Together, these interactions lead to a three-dimensional network.
of the title molecular salt, CKeywords: crystal structure; 4-sulfamoylanilinium; dihydrogen phosphate; hydrogen bonding; sulfanilamide derivatives; sulfa drugs.
CCDC reference: 1016950
1. Related literature
For background to sulfa drugs, see: Topacli & Kesimli (2001); Gelbrich et al. (2007). For structures of other molecular salts of the same cation, see: Anitha et al. (2013); Ravikumar et al. (2013); Pandiarajan et al. (2011); Zaouali Zgolli et al. (2010); Gelbrich et al. (2008); Chatterjee et al. (1981).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 1016950
10.1107/S1600536814017462/hb7251sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017462/hb7251Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017462/hb7251Isup3.cml
Sulfanilamide (4-sulfamoyl aniline) and its derivatives known as sulfa drugs were used to treat bacterial infections (e.g. Gelbrich et al., 2007). Sulfa drugs were successfully deployed as chemotherapeutic agents (Topacli & Kesimli, 2001).
The perchlorate (Anitha, et al., 2013); nitrate, (Pandiarajan, et al., 2011); sulfate (Ravikumar et al., 2013) and hydrogen chloride (Zaouali Zgolli et al., 2010) complexes of sulfanilamide were already been reported. The present report on phosphate salt of sulfanilamide is part of a series of x-ray investigations being carried out on sulfanilamide-inorganic acid complexes.
The
of the title compound contains a cation with a protonated amino group and the dihydrogen phosphate anion C6H9N2O2S+.H2PO4–(Fig. 1). The features a three-dimensional hydrogen bonding network formed through N—H···O, O—H···O and C—H···O hydrogen bonds. The sulfomylalinium cations and the phosphate anions form independent chains through N—H···O [ N1—H1A···O5 ; N1—H1B··· O6 ; N1—H1C···O6 ; N2—H2A···O3 and N2—H2B···O2]. O—H···O [viz., O3—H3A,,,O1 (-1+x, y, z) and O4—H4A···O5 (-1+x, y, z)] hydrogen bonds along the shortest a-axis. Two C—H···O hydrogen bonds viz., C3—H3···O6 (1+x, y, z); C6—H6···O4 (x, y, -1+z) involving diametricaly opposite aryl carbon atoms in the benzene ring of the 4-sulfomylanilinum cation act as donors to form chains parallel to (202) in which P = O and P—OH are acceptors . This one dimensional chain is extended into a two dimensional layer parallel to the ac-plane through the same P—OH linking the adjacent phosophate anion and another P=O.The overall picture of the complex intermolecular interactions may be visualized in terms of sinple graph-set motifs; viz., R22(9) motif generated through O3—H3A···O1 (-1+x, y, z) and C3—H3···O6 (1+x, y, z) hydrogen bonds, two R66(26) motifs generated involving O3—H3A···O1 (-1+x, y, z) and C6—H6···O4(x, y, -1+z); O4—H4A···O5(-1+x,y,z) hydrogen bond interactions (Fig. 2).
The title compound was synthesised by heating a mixture of sulphanilamide (3.4 g) and phosphoric acid (0.5 ml of 98% concentration) in 20 ml of water as the stoichiometric ratio of 2:1 (at 60°C) under reflux for 1 h. The solution upon allowing to evaporate under room temperature yielded colourless needles of the title salt.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).Fig. 1. Molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Hydrogen-bonding environment of the dihydrogen phosphate anion viewed along the b-axis. Other hydrogen bonds involving N atom and non-participating H atoms have been omitted for clarity. |
C6H9N2O2S+·H2O4P− | Z = 2 |
Mr = 270.20 | F(000) = 280 |
Monoclinic, Pc | Dx = 1.688 Mg m−3 |
a = 4.8041 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8564 (15) Å | µ = 0.47 mm−1 |
c = 10.3862 (15) Å | T = 294 K |
β = 101.067 (2)° | Needle, colourless |
V = 531.62 (13) Å3 | 0.28 × 0.18 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 2502 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.018 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | θmax = 28.3°, θmin = 1.9° |
Tmin = 0.94, Tmax = 0.99 | h = −6→6 |
6033 measured reflections | k = −14→14 |
2512 independent reflections | l = −13→13 |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0212P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max < 0.001 |
wR(F2) = 0.055 | Δρmax = 0.20 e Å−3 |
S = 1.06 | Δρmin = −0.22 e Å−3 |
2512 reflections | Extinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
174 parameters | Extinction coefficient: 0.099 (8) |
4 restraints | Absolute structure: Flack x determined using 1209 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Hydrogen site location: mixed | Absolute structure parameter: 0.069 (16) |
C6H9N2O2S+·H2O4P− | V = 531.62 (13) Å3 |
Mr = 270.20 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 4.8041 (7) Å | µ = 0.47 mm−1 |
b = 10.8564 (15) Å | T = 294 K |
c = 10.3862 (15) Å | 0.28 × 0.18 × 0.10 mm |
β = 101.067 (2)° |
Bruker SMART APEX CCD diffractometer | 2512 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2502 reflections with I > 2σ(I) |
Tmin = 0.94, Tmax = 0.99 | Rint = 0.018 |
6033 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.055 | Δρmax = 0.20 e Å−3 |
S = 1.06 | Δρmin = −0.22 e Å−3 |
2512 reflections | Absolute structure: Flack x determined using 1209 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
174 parameters | Absolute structure parameter: 0.069 (16) |
4 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8098 (4) | 0.14923 (16) | 0.09044 (19) | 0.0265 (3) | |
C2 | 1.0153 (5) | 0.1497 (2) | 0.2035 (2) | 0.0365 (5) | |
H2 | 1.1473 | 0.0862 | 0.2199 | 0.044* | |
C3 | 1.0231 (5) | 0.2455 (2) | 0.2922 (2) | 0.0364 (5) | |
H3 | 1.1623 | 0.2475 | 0.3680 | 0.044* | |
C4 | 0.8220 (4) | 0.33816 (17) | 0.26728 (19) | 0.0271 (4) | |
C5 | 0.6183 (5) | 0.3379 (2) | 0.1532 (2) | 0.0381 (5) | |
H5 | 0.4862 | 0.4013 | 0.1368 | 0.046* | |
C6 | 0.6116 (5) | 0.2433 (2) | 0.0639 (2) | 0.0379 (5) | |
H6 | 0.4759 | 0.2426 | −0.0132 | 0.046* | |
N1 | 0.7938 (4) | 0.04600 (14) | −0.00122 (17) | 0.0271 (3) | |
N2 | 0.9589 (4) | 0.57959 (17) | 0.3299 (2) | 0.0352 (4) | |
O6 | 0.3160 (3) | 0.08705 (13) | 0.55239 (13) | 0.0288 (3) | |
O5 | 0.7279 (3) | 0.12348 (14) | 0.74157 (13) | 0.0298 (3) | |
O3 | 0.4839 (5) | 0.30112 (15) | 0.62757 (19) | 0.0504 (5) | |
O4 | 0.2474 (3) | 0.1676 (2) | 0.77341 (17) | 0.0506 (5) | |
O1 | 1.0051 (4) | 0.42220 (15) | 0.50222 (15) | 0.0364 (3) | |
O2 | 0.5320 (3) | 0.48636 (17) | 0.38326 (17) | 0.0400 (4) | |
P1 | 0.44104 (7) | 0.16369 (4) | 0.66908 (4) | 0.02196 (12) | |
S1 | 0.82319 (8) | 0.45858 (4) | 0.38175 (5) | 0.02634 (13) | |
H1A | 0.760 (7) | 0.072 (3) | −0.082 (3) | 0.039 (7)* | |
H1B | 0.639 (8) | 0.001 (3) | 0.006 (3) | 0.046 (8)* | |
H1C | 0.946 (8) | 0.003 (3) | 0.018 (3) | 0.046 (8)* | |
H2A | 0.855 (8) | 0.611 (3) | 0.261 (3) | 0.050 (9)* | |
H2B | 1.143 (8) | 0.578 (3) | 0.333 (3) | 0.042 (8)* | |
H3A | 0.343 (6) | 0.334 (3) | 0.594 (4) | 0.052 (10)* | |
H4A | 0.083 (6) | 0.164 (4) | 0.742 (4) | 0.080 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0272 (8) | 0.0273 (8) | 0.0245 (8) | −0.0007 (7) | 0.0037 (7) | 0.0024 (6) |
C2 | 0.0368 (11) | 0.0306 (9) | 0.0372 (10) | 0.0102 (8) | −0.0053 (9) | −0.0037 (8) |
C3 | 0.0362 (11) | 0.0335 (10) | 0.0336 (10) | 0.0084 (8) | −0.0084 (8) | −0.0030 (8) |
C4 | 0.0288 (9) | 0.0255 (8) | 0.0270 (8) | 0.0011 (6) | 0.0052 (7) | 0.0007 (6) |
C5 | 0.0395 (11) | 0.0363 (10) | 0.0344 (10) | 0.0145 (8) | −0.0036 (9) | 0.0009 (8) |
C6 | 0.0402 (11) | 0.0400 (11) | 0.0288 (9) | 0.0105 (8) | −0.0053 (7) | −0.0011 (8) |
N1 | 0.0287 (8) | 0.0275 (7) | 0.0243 (7) | −0.0007 (6) | 0.0035 (6) | 0.0016 (6) |
N2 | 0.0310 (9) | 0.0275 (8) | 0.0462 (10) | 0.0021 (7) | 0.0050 (7) | 0.0048 (7) |
O6 | 0.0273 (6) | 0.0314 (7) | 0.0262 (6) | −0.0009 (5) | 0.0014 (5) | −0.0035 (5) |
O5 | 0.0189 (6) | 0.0402 (8) | 0.0290 (6) | 0.0020 (5) | 0.0017 (5) | 0.0063 (6) |
O3 | 0.0514 (10) | 0.0261 (7) | 0.0608 (11) | −0.0079 (7) | −0.0212 (8) | 0.0091 (7) |
O4 | 0.0195 (7) | 0.0980 (15) | 0.0357 (9) | −0.0113 (7) | 0.0086 (6) | −0.0243 (8) |
O1 | 0.0389 (8) | 0.0414 (8) | 0.0276 (6) | 0.0079 (7) | 0.0031 (6) | 0.0013 (6) |
O2 | 0.0250 (7) | 0.0473 (8) | 0.0492 (9) | 0.0050 (6) | 0.0107 (6) | −0.0059 (7) |
P1 | 0.01703 (19) | 0.0251 (2) | 0.0230 (2) | −0.00087 (15) | 0.00186 (14) | −0.00013 (15) |
S1 | 0.0230 (2) | 0.0275 (2) | 0.0287 (2) | 0.00361 (16) | 0.00527 (14) | 0.00025 (15) |
C1—C2 | 1.381 (3) | N1—H1B | 0.90 (4) |
C1—C6 | 1.387 (3) | N1—H1C | 0.86 (4) |
C1—N1 | 1.463 (2) | N2—S1 | 1.6048 (19) |
C2—C3 | 1.386 (3) | N2—H2A | 0.86 (3) |
C2—H2 | 0.9300 | N2—H2B | 0.88 (4) |
C3—C4 | 1.384 (3) | O6—P1 | 1.4975 (14) |
C3—H3 | 0.9300 | O5—P1 | 1.5027 (13) |
C4—C5 | 1.384 (3) | O3—P1 | 1.5774 (17) |
C4—S1 | 1.7665 (19) | O3—H3A | 0.78 (2) |
C5—C6 | 1.380 (3) | O4—P1 | 1.5583 (16) |
C5—H5 | 0.9300 | O4—H4A | 0.80 (3) |
C6—H6 | 0.9300 | O1—S1 | 1.4371 (16) |
N1—H1A | 0.87 (3) | O2—S1 | 1.4339 (15) |
C2—C1—C6 | 121.19 (18) | C1—N1—H1C | 109 (2) |
C2—C1—N1 | 119.70 (18) | H1A—N1—H1C | 113 (3) |
C6—C1—N1 | 119.08 (18) | H1B—N1—H1C | 111 (3) |
C1—C2—C3 | 119.45 (19) | S1—N2—H2A | 113 (2) |
C1—C2—H2 | 120.3 | S1—N2—H2B | 116 (2) |
C3—C2—H2 | 120.3 | H2A—N2—H2B | 117 (3) |
C4—C3—C2 | 119.49 (19) | P1—O3—H3A | 114 (3) |
C4—C3—H3 | 120.3 | P1—O4—H4A | 113 (3) |
C2—C3—H3 | 120.3 | O6—P1—O5 | 115.53 (9) |
C3—C4—C5 | 120.79 (18) | O6—P1—O4 | 112.17 (9) |
C3—C4—S1 | 120.00 (16) | O5—P1—O4 | 105.78 (9) |
C5—C4—S1 | 119.21 (15) | O6—P1—O3 | 110.94 (9) |
C6—C5—C4 | 119.90 (19) | O5—P1—O3 | 104.87 (10) |
C6—C5—H5 | 120.0 | O4—P1—O3 | 106.92 (13) |
C4—C5—H5 | 120.0 | O2—S1—O1 | 118.66 (10) |
C5—C6—C1 | 119.15 (19) | O2—S1—N2 | 106.94 (11) |
C5—C6—H6 | 120.4 | O1—S1—N2 | 107.39 (11) |
C1—C6—H6 | 120.4 | O2—S1—C4 | 106.61 (10) |
C1—N1—H1A | 110.5 (19) | O1—S1—C4 | 107.79 (10) |
C1—N1—H1B | 108 (2) | N2—S1—C4 | 109.21 (10) |
H1A—N1—H1B | 105 (3) | ||
C6—C1—C2—C3 | 0.3 (4) | C2—C1—C6—C5 | −0.9 (3) |
N1—C1—C2—C3 | −177.7 (2) | N1—C1—C6—C5 | 177.0 (2) |
C1—C2—C3—C4 | 1.0 (4) | C3—C4—S1—O2 | −142.11 (19) |
C2—C3—C4—C5 | −1.7 (4) | C5—C4—S1—O2 | 37.8 (2) |
C2—C3—C4—S1 | 178.21 (19) | C3—C4—S1—O1 | −13.7 (2) |
C3—C4—C5—C6 | 1.1 (4) | C5—C4—S1—O1 | 166.24 (18) |
S1—C4—C5—C6 | −178.88 (19) | C3—C4—S1—N2 | 102.68 (19) |
C4—C5—C6—C1 | 0.3 (4) | C5—C4—S1—N2 | −77.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5i | 0.87 (3) | 1.89 (3) | 2.760 (2) | 174 (3) |
N1—H1B···O6ii | 0.90 (4) | 1.96 (4) | 2.856 (2) | 170 (3) |
N1—H1C···O6iii | 0.86 (4) | 2.00 (4) | 2.855 (2) | 175 (3) |
N2—H2A···O3iv | 0.86 (3) | 2.25 (4) | 3.076 (3) | 161 (3) |
N2—H2B···O2v | 0.88 (4) | 2.10 (4) | 2.886 (3) | 149 (3) |
O3—H3A···O1vi | 0.78 (2) | 1.97 (2) | 2.750 (3) | 176 (4) |
O4—H4A···O5vi | 0.80 (3) | 1.76 (3) | 2.500 (2) | 154 (5) |
C3—H3···O6v | 0.93 | 2.59 | 3.283 (3) | 132 |
C6—H6···O4i | 0.93 | 2.42 | 3.288 (3) | 156 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y, z−1/2; (iii) x+1, −y, z−1/2; (iv) x, −y+1, z−1/2; (v) x+1, y, z; (vi) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5i | 0.87 (3) | 1.89 (3) | 2.760 (2) | 174 (3) |
N1—H1B···O6ii | 0.90 (4) | 1.96 (4) | 2.856 (2) | 170 (3) |
N1—H1C···O6iii | 0.86 (4) | 2.00 (4) | 2.855 (2) | 175 (3) |
N2—H2A···O3iv | 0.86 (3) | 2.25 (4) | 3.076 (3) | 161 (3) |
N2—H2B···O2v | 0.88 (4) | 2.10 (4) | 2.886 (3) | 149 (3) |
O3—H3A···O1vi | 0.78 (2) | 1.97 (2) | 2.750 (3) | 176 (4) |
O4—H4A···O5vi | 0.80 (3) | 1.76 (3) | 2.500 (2) | 154 (5) |
C3—H3···O6v | 0.93 | 2.59 | 3.283 (3) | 132 |
C6—H6···O4i | 0.93 | 2.42 | 3.288 (3) | 156 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y, z−1/2; (iii) x+1, −y, z−1/2; (iv) x, −y+1, z−1/2; (v) x+1, y, z; (vi) x−1, y, z. |
Acknowledgements
The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection. CM, NM and SP thank the management of the Devangar Arts College for their encouragement.
References
Anitha, R., Athimoolam, S., Gunasekaran, M. & Sridhar, B. (2013). Acta Cryst. E69, o1236. CSD CrossRef IUCr Journals Google Scholar
Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323–o326. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pandiarajan, S., Balasubramanian, S., Ravikumar, B. & Athimoolam, S. (2011). Acta Cryst. E67, o2788. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Ravikumar, B., Pandiarajan, S. & Athimoolam, S. (2013). Acta Cryst. E69, o596. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Topacli, A. & Kesimli, B. (2001). Spectrosc. Lett. 34, 513–526. Web of Science CrossRef CAS Google Scholar
Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.