organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o997-o998

Crystal structure of 4-sulfamoylanilinium di­hydrogen phosphate

aDepartment of Physics, Devangar Arts College, Aruppukottai 626 101, Tamil Nadu, India, and bDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 July 2014; accepted 30 July 2014; online 13 August 2014)

In the crystal structure of the title mol­ecular salt, C6H9N2O2S+·H2PO4, the sulfomylalinium cations and the di­hydrogen phosphate anions form independent [100] chains through Ns—H⋯O (s = sulfamo­yl) and O—H⋯O hydrogen bonds, respectively. The chains are cross-linked by Na—H⋯O (a = amine) hydrogen bonds, generating (010) sheets. Two C—H⋯O hydrogen bonds involving diametrically opposite C atoms in the benzene ring of the cation as donors form chains parallel to [202] in which P=O and P—OH groups are acceptors. Together, these inter­actions lead to a three-dimensional network.

1. Related literature

For background to sulfa drugs, see: Topacli & Kesimli (2001[Topacli, A. & Kesimli, B. (2001). Spectrosc. Lett. 34, 513-526.]); Gelbrich et al. (2007[Gelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323-o326.]). For structures of other mol­ecular salts of the same cation, see: Anitha et al. (2013[Anitha, R., Athimoolam, S., Gunasekaran, M. & Sridhar, B. (2013). Acta Cryst. E69, o1236.]); Ravikumar et al. (2013[Ravikumar, B., Pandiarajan, S. & Athimoolam, S. (2013). Acta Cryst. E69, o596.]); Pandiarajan et al. (2011[Pandiarajan, S., Balasubramanian, S., Ravikumar, B. & Athimoolam, S. (2011). Acta Cryst. E67, o2788.]); Zaouali Zgolli et al. (2010[Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488.]); Gelbrich et al. (2008[Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205-o207.]); Chatterjee et al. (1981[Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835-1838.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H9N2O2S+·H2O4P

  • Mr = 270.20

  • Monoclinic, P c

  • a = 4.8041 (7) Å

  • b = 10.8564 (15) Å

  • c = 10.3862 (15) Å

  • β = 101.067 (2)°

  • V = 531.62 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 294 K

  • 0.28 × 0.18 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.99

  • 6033 measured reflections

  • 2512 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.06

  • 2512 reflections

  • 174 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack x determined using 1209 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.069 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.87 (3) 1.89 (3) 2.760 (2) 174 (3)
N1—H1B⋯O6ii 0.90 (4) 1.96 (4) 2.856 (2) 170 (3)
N1—H1C⋯O6iii 0.86 (4) 2.00 (4) 2.855 (2) 175 (3)
N2—H2A⋯O3iv 0.86 (3) 2.25 (4) 3.076 (3) 161 (3)
N2—H2B⋯O2v 0.88 (4) 2.10 (4) 2.886 (3) 149 (3)
O3—H3A⋯O1vi 0.78 (2) 1.97 (2) 2.750 (3) 176 (4)
O4—H4A⋯O5vi 0.80 (3) 1.76 (3) 2.500 (2) 154 (5)
C3—H3⋯O6v 0.93 2.59 3.283 (3) 132
C6—H6⋯O4i 0.93 2.42 3.288 (3) 156
Symmetry codes: (i) x, y, z-1; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x+1, -y, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Sulfanilamide (4-sulfamoyl aniline) and its derivatives known as sulfa drugs were used to treat bacterial infections (e.g. Gelbrich et al., 2007). Sulfa drugs were successfully deployed as chemotherapeutic agents (Topacli & Kesimli, 2001).

The perchlorate (Anitha, et al., 2013); nitrate, (Pandiarajan, et al., 2011); sulfate (Ravikumar et al., 2013) and hydrogen chloride (Zaouali Zgolli et al., 2010) complexes of sulfanilamide were already been reported. The present report on phosphate salt of sulfanilamide is part of a series of x-ray investigations being carried out on sulfanilamide-inorganic acid complexes.

The crystal structure of the title compound contains a cation with a protonated amino group and the di­hydrogen phosphate anion C6H9N2O2S+.H2PO4(Fig. 1). The crystal structure features a three-dimensional hydrogen bonding network formed through N—H···O, O—H···O and C—H···O hydrogen bonds. The sulfomylalinium cations and the phosphate anions form independent chains through N—H···O [ N1—H1A···O5 ; N1—H1B··· O6 ; N1—H1C···O6 ; N2—H2A···O3 and N2—H2B···O2]. O—H···O [viz., O3—H3A,,,O1 (-1+x, y, z) and O4—H4A···O5 (-1+x, y, z)] hydrogen bonds along the shortest a-axis. Two C—H···O hydrogen bonds viz., C3—H3···O6 (1+x, y, z); C6—H6···O4 (x, y, -1+z) involving diametricaly opposite aryl carbon atoms in the benzene ring of the 4-sulfomylanilinum cation act as donors to form chains parallel to (202) in which P = O and P—OH are acceptors . This one dimensional chain is extended into a two dimensional layer parallel to the ac-plane through the same P—OH linking the adjacent phosophate anion and another P=O.

The overall picture of the complex inter­molecular inter­actions may be visualized in terms of sinple graph-set motifs; viz., R22(9) motif generated through O3—H3A···O1 (-1+x, y, z) and C3—H3···O6 (1+x, y, z) hydrogen bonds, two R66(26) motifs generated involving O3—H3A···O1 (-1+x, y, z) and C6—H6···O4(x, y, -1+z); O4—H4A···O5(-1+x,y,z) hydrogen bond inter­actions (Fig. 2).

Synthesis and crystallization top

The title compound was synthesised by heating a mixture of sulphanilamide (3.4 g) and phospho­ric acid (0.5 ml of 98% concentration) in 20 ml of water as the stoichiometric ratio of 2:1 (at 60°C) under reflux for 1 h. The solution upon allowing to evaporate under room temperature yielded colourless needles of the title salt.

Related literature top

For background to sulfa drugs, see: Topacli & Kesimli (2001); Gelbrich et al. (2007). For structures of other molecular salts of the same cation, see: Anitha et al. (2013); Ravikumar et al. (2013); Pandiarajan et al. (2011); Zaouali Zgolli et al. (2010); Gelbrich et al. (2008); Chatterjee et al. (1981).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonding environment of the dihydrogen phosphate anion viewed along the b-axis. Other hydrogen bonds involving N atom and non-participating H atoms have been omitted for clarity.
4-Sulfamoylanilinium dihydrogen phosphate top
Crystal data top
C6H9N2O2S+·H2O4PZ = 2
Mr = 270.20F(000) = 280
Monoclinic, PcDx = 1.688 Mg m3
a = 4.8041 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8564 (15) ŵ = 0.47 mm1
c = 10.3862 (15) ÅT = 294 K
β = 101.067 (2)°Needle, colourless
V = 531.62 (13) Å30.28 × 0.18 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2502 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.94, Tmax = 0.99h = 66
6033 measured reflectionsk = 1414
2512 independent reflectionsl = 1313
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.055Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.22 e Å3
2512 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
174 parametersExtinction coefficient: 0.099 (8)
4 restraintsAbsolute structure: Flack x determined using 1209 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: mixedAbsolute structure parameter: 0.069 (16)
Crystal data top
C6H9N2O2S+·H2O4PV = 531.62 (13) Å3
Mr = 270.20Z = 2
Monoclinic, PcMo Kα radiation
a = 4.8041 (7) ŵ = 0.47 mm1
b = 10.8564 (15) ÅT = 294 K
c = 10.3862 (15) Å0.28 × 0.18 × 0.10 mm
β = 101.067 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2502 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.99Rint = 0.018
6033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.22 e Å3
2512 reflectionsAbsolute structure: Flack x determined using 1209 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
174 parametersAbsolute structure parameter: 0.069 (16)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8098 (4)0.14923 (16)0.09044 (19)0.0265 (3)
C21.0153 (5)0.1497 (2)0.2035 (2)0.0365 (5)
H21.14730.08620.21990.044*
C31.0231 (5)0.2455 (2)0.2922 (2)0.0364 (5)
H31.16230.24750.36800.044*
C40.8220 (4)0.33816 (17)0.26728 (19)0.0271 (4)
C50.6183 (5)0.3379 (2)0.1532 (2)0.0381 (5)
H50.48620.40130.13680.046*
C60.6116 (5)0.2433 (2)0.0639 (2)0.0379 (5)
H60.47590.24260.01320.046*
N10.7938 (4)0.04600 (14)0.00122 (17)0.0271 (3)
N20.9589 (4)0.57959 (17)0.3299 (2)0.0352 (4)
O60.3160 (3)0.08705 (13)0.55239 (13)0.0288 (3)
O50.7279 (3)0.12348 (14)0.74157 (13)0.0298 (3)
O30.4839 (5)0.30112 (15)0.62757 (19)0.0504 (5)
O40.2474 (3)0.1676 (2)0.77341 (17)0.0506 (5)
O11.0051 (4)0.42220 (15)0.50222 (15)0.0364 (3)
O20.5320 (3)0.48636 (17)0.38326 (17)0.0400 (4)
P10.44104 (7)0.16369 (4)0.66908 (4)0.02196 (12)
S10.82319 (8)0.45858 (4)0.38175 (5)0.02634 (13)
H1A0.760 (7)0.072 (3)0.082 (3)0.039 (7)*
H1B0.639 (8)0.001 (3)0.006 (3)0.046 (8)*
H1C0.946 (8)0.003 (3)0.018 (3)0.046 (8)*
H2A0.855 (8)0.611 (3)0.261 (3)0.050 (9)*
H2B1.143 (8)0.578 (3)0.333 (3)0.042 (8)*
H3A0.343 (6)0.334 (3)0.594 (4)0.052 (10)*
H4A0.083 (6)0.164 (4)0.742 (4)0.080 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (8)0.0273 (8)0.0245 (8)0.0007 (7)0.0037 (7)0.0024 (6)
C20.0368 (11)0.0306 (9)0.0372 (10)0.0102 (8)0.0053 (9)0.0037 (8)
C30.0362 (11)0.0335 (10)0.0336 (10)0.0084 (8)0.0084 (8)0.0030 (8)
C40.0288 (9)0.0255 (8)0.0270 (8)0.0011 (6)0.0052 (7)0.0007 (6)
C50.0395 (11)0.0363 (10)0.0344 (10)0.0145 (8)0.0036 (9)0.0009 (8)
C60.0402 (11)0.0400 (11)0.0288 (9)0.0105 (8)0.0053 (7)0.0011 (8)
N10.0287 (8)0.0275 (7)0.0243 (7)0.0007 (6)0.0035 (6)0.0016 (6)
N20.0310 (9)0.0275 (8)0.0462 (10)0.0021 (7)0.0050 (7)0.0048 (7)
O60.0273 (6)0.0314 (7)0.0262 (6)0.0009 (5)0.0014 (5)0.0035 (5)
O50.0189 (6)0.0402 (8)0.0290 (6)0.0020 (5)0.0017 (5)0.0063 (6)
O30.0514 (10)0.0261 (7)0.0608 (11)0.0079 (7)0.0212 (8)0.0091 (7)
O40.0195 (7)0.0980 (15)0.0357 (9)0.0113 (7)0.0086 (6)0.0243 (8)
O10.0389 (8)0.0414 (8)0.0276 (6)0.0079 (7)0.0031 (6)0.0013 (6)
O20.0250 (7)0.0473 (8)0.0492 (9)0.0050 (6)0.0107 (6)0.0059 (7)
P10.01703 (19)0.0251 (2)0.0230 (2)0.00087 (15)0.00186 (14)0.00013 (15)
S10.0230 (2)0.0275 (2)0.0287 (2)0.00361 (16)0.00527 (14)0.00025 (15)
Geometric parameters (Å, º) top
C1—C21.381 (3)N1—H1B0.90 (4)
C1—C61.387 (3)N1—H1C0.86 (4)
C1—N11.463 (2)N2—S11.6048 (19)
C2—C31.386 (3)N2—H2A0.86 (3)
C2—H20.9300N2—H2B0.88 (4)
C3—C41.384 (3)O6—P11.4975 (14)
C3—H30.9300O5—P11.5027 (13)
C4—C51.384 (3)O3—P11.5774 (17)
C4—S11.7665 (19)O3—H3A0.78 (2)
C5—C61.380 (3)O4—P11.5583 (16)
C5—H50.9300O4—H4A0.80 (3)
C6—H60.9300O1—S11.4371 (16)
N1—H1A0.87 (3)O2—S11.4339 (15)
C2—C1—C6121.19 (18)C1—N1—H1C109 (2)
C2—C1—N1119.70 (18)H1A—N1—H1C113 (3)
C6—C1—N1119.08 (18)H1B—N1—H1C111 (3)
C1—C2—C3119.45 (19)S1—N2—H2A113 (2)
C1—C2—H2120.3S1—N2—H2B116 (2)
C3—C2—H2120.3H2A—N2—H2B117 (3)
C4—C3—C2119.49 (19)P1—O3—H3A114 (3)
C4—C3—H3120.3P1—O4—H4A113 (3)
C2—C3—H3120.3O6—P1—O5115.53 (9)
C3—C4—C5120.79 (18)O6—P1—O4112.17 (9)
C3—C4—S1120.00 (16)O5—P1—O4105.78 (9)
C5—C4—S1119.21 (15)O6—P1—O3110.94 (9)
C6—C5—C4119.90 (19)O5—P1—O3104.87 (10)
C6—C5—H5120.0O4—P1—O3106.92 (13)
C4—C5—H5120.0O2—S1—O1118.66 (10)
C5—C6—C1119.15 (19)O2—S1—N2106.94 (11)
C5—C6—H6120.4O1—S1—N2107.39 (11)
C1—C6—H6120.4O2—S1—C4106.61 (10)
C1—N1—H1A110.5 (19)O1—S1—C4107.79 (10)
C1—N1—H1B108 (2)N2—S1—C4109.21 (10)
H1A—N1—H1B105 (3)
C6—C1—C2—C30.3 (4)C2—C1—C6—C50.9 (3)
N1—C1—C2—C3177.7 (2)N1—C1—C6—C5177.0 (2)
C1—C2—C3—C41.0 (4)C3—C4—S1—O2142.11 (19)
C2—C3—C4—C51.7 (4)C5—C4—S1—O237.8 (2)
C2—C3—C4—S1178.21 (19)C3—C4—S1—O113.7 (2)
C3—C4—C5—C61.1 (4)C5—C4—S1—O1166.24 (18)
S1—C4—C5—C6178.88 (19)C3—C4—S1—N2102.68 (19)
C4—C5—C6—C10.3 (4)C5—C4—S1—N277.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.87 (3)1.89 (3)2.760 (2)174 (3)
N1—H1B···O6ii0.90 (4)1.96 (4)2.856 (2)170 (3)
N1—H1C···O6iii0.86 (4)2.00 (4)2.855 (2)175 (3)
N2—H2A···O3iv0.86 (3)2.25 (4)3.076 (3)161 (3)
N2—H2B···O2v0.88 (4)2.10 (4)2.886 (3)149 (3)
O3—H3A···O1vi0.78 (2)1.97 (2)2.750 (3)176 (4)
O4—H4A···O5vi0.80 (3)1.76 (3)2.500 (2)154 (5)
C3—H3···O6v0.932.593.283 (3)132
C6—H6···O4i0.932.423.288 (3)156
Symmetry codes: (i) x, y, z1; (ii) x, y, z1/2; (iii) x+1, y, z1/2; (iv) x, y+1, z1/2; (v) x+1, y, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.87 (3)1.89 (3)2.760 (2)174 (3)
N1—H1B···O6ii0.90 (4)1.96 (4)2.856 (2)170 (3)
N1—H1C···O6iii0.86 (4)2.00 (4)2.855 (2)175 (3)
N2—H2A···O3iv0.86 (3)2.25 (4)3.076 (3)161 (3)
N2—H2B···O2v0.88 (4)2.10 (4)2.886 (3)149 (3)
O3—H3A···O1vi0.78 (2)1.97 (2)2.750 (3)176 (4)
O4—H4A···O5vi0.80 (3)1.76 (3)2.500 (2)154 (5)
C3—H3···O6v0.932.593.283 (3)132
C6—H6···O4i0.932.423.288 (3)156
Symmetry codes: (i) x, y, z1; (ii) x, y, z1/2; (iii) x+1, y, z1/2; (iv) x, y+1, z1/2; (v) x+1, y, z; (vi) x1, y, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection. CM, NM and SP thank the management of the Devangar Arts College for their encouragement.

References

First citationAnitha, R., Athimoolam, S., Gunasekaran, M. & Sridhar, B. (2013). Acta Cryst. E69, o1236.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323–o326.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandiarajan, S., Balasubramanian, S., Ravikumar, B. & Athimoolam, S. (2011). Acta Cryst. E67, o2788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRavikumar, B., Pandiarajan, S. & Athimoolam, S. (2013). Acta Cryst. E69, o596.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTopacli, A. & Kesimli, B. (2001). Spectrosc. Lett. 34, 513–526.  Web of Science CrossRef CAS Google Scholar
First citationZaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o997-o998
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds