organic compounds
of 1-(4-formylbenzylidene)thiosemicarbazone
aDepartamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es
The 9H9N3OS, contains two approximately planar molecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å), with different conformations. In one of them, the C=O group is syn to the S atom and in the other it is anti. Each molecule features an intramolecular N—H⋯N hydrogen bond, which generates an S(5) ring. In the crystal, molecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating discrete networks; the syn molecules form [010] chains and the anti molecules form (100) sheets.
of the title compound, CKeywords: crystal structure; thiosemicarbazone; hydrogen bonds.
CCDC reference: 1016158
1. Related literature
For further synthetic details, see: Jagst et al. (2005). For structure–biological activity relationships in thiosemicarbazones, see: Lukmantara et al. (2013). For their biological properties, see: Serda et al. (2012).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1016158
10.1107/S1600536814017255/hb7254sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017255/hb7254Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017255/hb7254Isup3.cml
The study of the thiosemicarbazones is interesting because they are compounds which show diverse biological properties (Serda et al., 2012) and pharmacological activities (Lukmantara et al., 2013). Also the thiosemicarbazones are of interest from a supramolecular point of view since they can be functionalized to give different supramolecular arrays by hydrogen bonds.
We report here the synthesis and structural characterization of (4-formylbenzylidine)-thiosemicarbazone (Fig.1). The two molecules in the
are structurally different due to the different orientation of the carbonyl group respect to the thiosemicarbazone chain. The thiosemicarbazone moiety in both molecules shows an E conformation with the sulfur atom trans to the iminic nitrogen N3 atom. The molecules labeled as B are linked into lineal chains by N—H···O hydrogen bonds with a d(N···O) of 2.857 (3) Å but the molecules labeled as A use the same kind of hydrogen bond with a longer d(N···O) of 3.190 (3) Å to form helical chains (Fig. 2). The two types of chains are packed by N—H···S hydrogen bonds with d(N—S) in the range 3.32-3.41 Å and (NHS) angles close to linearity (between 166 and 172°).A solution of thiosemicarbazide (342mg, 3.72 mmol) in 50 ml of water was slowly added at 50°C to a solution of terephthaldicarboxaldehyde (500 mg, 3.73 mmol) in 100 ml water. Then the mixture was stirred at 50°C for 30 mins. Once cooled to room temperature, the yellow solid was filtered off and vacuum dried. Yellow prisms were obtained by recrystallization from EtOH/H2O (1:1) solution. Yield: 78%. M.pt: 212–214°C. IR data (KBr, cm-1): 3452w, 3328m, 3152m ν(NH); 2974w, 2863w ν(C—H aldehyde); 1686s ν(C=O); 1533s, 1281m ν(C=N), 830m, 793m ν(C=S). 1H NMR data (DMSO-d6, ppm): 10.60 (s, 1H, N(2)—H); 10.01 (s, 1H, C(1)—H); 8.32 (s, 1H, N(2)—H); 8.15 (s, 1H, N(2)—H); 8.09 (s, 1H, C(8)—H); 8.02 (d, 2H, J = 8.2 Hz, C(3,7)-H); 7.91 (d, 2H, J = 8.2 Hz, C(4,6)-H).
Data collection: SMART (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. ORTEP view of the two molecules of the title compound. Displacement ellipsoids shown at the 50% probability level. | |
Fig. 2. View of the crystal packing showing the two different chains. |
C9H9N3OS | F(000) = 864 |
Mr = 207.25 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3888 (9) Å | Cell parameters from 6097 reflections |
b = 11.7972 (8) Å | θ = 2.3–27.2° |
c = 14.9428 (11) Å | µ = 0.29 mm−1 |
β = 110.286 (1)° | T = 293 K |
V = 2048.5 (3) Å3 | Prism, yellow |
Z = 8 | 0.51 × 0.44 × 0.33 mm |
Bruker SMART 1000 CCD diffractometer | 3344 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.022 |
ϕ and ω scans | θmax = 28.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→16 |
Tmin = 0.693, Tmax = 0.746 | k = −15→15 |
19018 measured reflections | l = −19→19 |
4920 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.8755P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4920 reflections | Δρmax = 0.36 e Å−3 |
277 parameters | Δρmin = −0.35 e Å−3 |
C9H9N3OS | V = 2048.5 (3) Å3 |
Mr = 207.25 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.3888 (9) Å | µ = 0.29 mm−1 |
b = 11.7972 (8) Å | T = 293 K |
c = 14.9428 (11) Å | 0.51 × 0.44 × 0.33 mm |
β = 110.286 (1)° |
Bruker SMART 1000 CCD diffractometer | 4920 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3344 reflections with I > 2σ(I) |
Tmin = 0.693, Tmax = 0.746 | Rint = 0.022 |
19018 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.36 e Å−3 |
4920 reflections | Δρmin = −0.35 e Å−3 |
277 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N3A | 0.89210 (14) | 0.63007 (12) | −0.01356 (11) | 0.0479 (4) | |
S1A | 0.90693 (5) | 0.91696 (4) | −0.13892 (4) | 0.06120 (17) | |
O1A | 0.89088 (17) | 0.16790 (14) | 0.29083 (12) | 0.0778 (5) | |
N1A | 0.97843 (19) | 0.83357 (16) | 0.03697 (14) | 0.0646 (5) | |
C1A | 0.92577 (17) | 0.81529 (15) | −0.05446 (14) | 0.0488 (4) | |
N2A | 0.88481 (15) | 0.71091 (13) | −0.08158 (13) | 0.0519 (4) | |
C2A | 0.84890 (17) | 0.53375 (15) | −0.04474 (14) | 0.0499 (4) | |
H2A | 0.8172 | 0.5214 | −0.1102 | 0.060* | |
C3A | 0.84875 (16) | 0.44243 (14) | 0.02136 (13) | 0.0446 (4) | |
C4A | 0.80002 (18) | 0.33905 (16) | −0.01569 (14) | 0.0536 (5) | |
H4A | 0.7659 | 0.3300 | −0.0813 | 0.064* | |
C5A | 0.80199 (18) | 0.24931 (15) | 0.04467 (14) | 0.0549 (5) | |
H5A | 0.7691 | 0.1803 | 0.0195 | 0.066* | |
C6A | 0.85265 (17) | 0.26217 (15) | 0.14207 (14) | 0.0487 (4) | |
C7A | 0.9008 (2) | 0.36573 (16) | 0.17931 (14) | 0.0576 (5) | |
H7A | 0.9348 | 0.3746 | 0.2450 | 0.069* | |
C8A | 0.89848 (19) | 0.45524 (16) | 0.11987 (14) | 0.0550 (5) | |
H8A | 0.9302 | 0.5245 | 0.1455 | 0.066* | |
C9A | 0.8559 (2) | 0.16499 (18) | 0.20519 (17) | 0.0615 (5) | |
H9A | 0.8286 | 0.0959 | 0.1763 | 0.074* | |
H1NA | 0.990 (2) | 0.782 (2) | 0.0779 (17) | 0.069 (7)* | |
H2NA | 1.007 (2) | 0.900 (2) | 0.0570 (17) | 0.075 (7)* | |
H3NA | 0.8488 (18) | 0.6956 (18) | −0.1392 (16) | 0.054 (6)* | |
S1B | 0.70719 (7) | 0.87078 (5) | 0.20508 (5) | 0.0836 (2) | |
O1B | 0.36864 (17) | −0.02352 (14) | 0.06781 (17) | 0.1027 (7) | |
N1B | 0.5055 (2) | 0.77556 (19) | 0.11523 (17) | 0.0728 (6) | |
C1B | 0.6141 (2) | 0.76241 (17) | 0.16872 (15) | 0.0633 (6) | |
N2B | 0.6506 (2) | 0.65472 (15) | 0.19199 (15) | 0.0659 (5) | |
C2B | 0.61285 (19) | 0.46749 (17) | 0.18659 (16) | 0.0596 (5) | |
H2B | 0.6866 | 0.4587 | 0.2310 | 0.072* | |
N3B | 0.57577 (16) | 0.56654 (14) | 0.15795 (13) | 0.0591 (4) | |
C3B | 0.54146 (18) | 0.36782 (16) | 0.15082 (15) | 0.0539 (5) | |
C4B | 0.5824 (2) | 0.26093 (18) | 0.18761 (17) | 0.0636 (6) | |
H4B | 0.6538 | 0.2549 | 0.2358 | 0.076* | |
C5B | 0.5189 (2) | 0.16464 (18) | 0.15366 (18) | 0.0663 (6) | |
H5B | 0.5477 | 0.0941 | 0.1784 | 0.080* | |
C6B | 0.41212 (19) | 0.17280 (17) | 0.08275 (16) | 0.0574 (5) | |
C7B | 0.37016 (19) | 0.27858 (17) | 0.04567 (16) | 0.0592 (5) | |
H6B | 0.2983 | 0.2843 | −0.0020 | 0.071* | |
C8B | 0.43420 (19) | 0.37484 (17) | 0.07894 (16) | 0.0583 (5) | |
H7B | 0.4056 | 0.4451 | 0.0532 | 0.070* | |
C9B | 0.3412 (2) | 0.07213 (19) | 0.0444 (2) | 0.0723 (6) | |
H9B | 0.2691 | 0.0838 | −0.0017 | 0.087* | |
H1NB | 0.463 (3) | 0.712 (3) | 0.093 (2) | 0.107 (10)* | |
H2NB | 0.478 (2) | 0.844 (2) | 0.1003 (19) | 0.085 (8)* | |
H3NB | 0.717 (2) | 0.642 (2) | 0.2304 (17) | 0.065 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3A | 0.0572 (9) | 0.0343 (7) | 0.0505 (8) | 0.0015 (7) | 0.0167 (7) | 0.0081 (6) |
S1A | 0.0797 (4) | 0.0362 (2) | 0.0594 (3) | −0.0022 (2) | 0.0134 (3) | 0.0123 (2) |
O1A | 0.1133 (14) | 0.0633 (10) | 0.0600 (10) | 0.0069 (9) | 0.0341 (9) | 0.0169 (8) |
N1A | 0.0936 (15) | 0.0363 (9) | 0.0541 (10) | −0.0053 (9) | 0.0130 (10) | 0.0050 (8) |
C1A | 0.0554 (11) | 0.0351 (9) | 0.0545 (11) | 0.0034 (8) | 0.0174 (9) | 0.0043 (8) |
N2A | 0.0682 (11) | 0.0343 (7) | 0.0479 (9) | −0.0020 (7) | 0.0135 (8) | 0.0067 (7) |
C2A | 0.0602 (11) | 0.0375 (9) | 0.0477 (10) | −0.0014 (8) | 0.0131 (8) | 0.0043 (8) |
C3A | 0.0498 (10) | 0.0347 (8) | 0.0480 (10) | 0.0006 (7) | 0.0151 (8) | 0.0032 (7) |
C4A | 0.0647 (12) | 0.0430 (9) | 0.0447 (10) | −0.0084 (9) | 0.0082 (9) | 0.0010 (8) |
C5A | 0.0638 (12) | 0.0367 (9) | 0.0586 (12) | −0.0116 (8) | 0.0141 (10) | −0.0017 (8) |
C6A | 0.0576 (11) | 0.0383 (9) | 0.0507 (10) | −0.0004 (8) | 0.0193 (9) | 0.0057 (8) |
C7A | 0.0817 (15) | 0.0445 (10) | 0.0439 (10) | −0.0040 (10) | 0.0183 (10) | −0.0002 (8) |
C8A | 0.0774 (14) | 0.0351 (9) | 0.0498 (10) | −0.0068 (9) | 0.0187 (10) | −0.0045 (8) |
C9A | 0.0775 (15) | 0.0449 (10) | 0.0641 (13) | −0.0005 (10) | 0.0271 (11) | 0.0082 (9) |
S1B | 0.1164 (6) | 0.0470 (3) | 0.0657 (4) | −0.0135 (3) | 0.0042 (3) | 0.0020 (3) |
O1B | 0.0916 (13) | 0.0436 (9) | 0.158 (2) | −0.0036 (9) | 0.0239 (13) | −0.0026 (11) |
N1B | 0.0818 (15) | 0.0507 (11) | 0.0826 (14) | 0.0090 (11) | 0.0243 (12) | 0.0030 (11) |
C1B | 0.0916 (17) | 0.0453 (11) | 0.0517 (11) | 0.0007 (11) | 0.0233 (11) | −0.0012 (9) |
N2B | 0.0739 (13) | 0.0445 (9) | 0.0669 (12) | −0.0017 (9) | 0.0088 (10) | −0.0003 (8) |
C2B | 0.0632 (13) | 0.0471 (11) | 0.0647 (13) | 0.0019 (10) | 0.0172 (10) | 0.0008 (9) |
N3B | 0.0685 (11) | 0.0429 (9) | 0.0635 (10) | −0.0031 (8) | 0.0199 (9) | −0.0036 (8) |
C3B | 0.0603 (12) | 0.0434 (10) | 0.0616 (12) | 0.0037 (9) | 0.0259 (10) | −0.0003 (9) |
C4B | 0.0605 (13) | 0.0517 (11) | 0.0738 (14) | 0.0066 (10) | 0.0172 (11) | 0.0103 (10) |
C5B | 0.0705 (15) | 0.0419 (10) | 0.0884 (16) | 0.0083 (10) | 0.0299 (13) | 0.0111 (10) |
C6B | 0.0607 (13) | 0.0434 (10) | 0.0742 (14) | 0.0031 (9) | 0.0312 (11) | −0.0022 (9) |
C7B | 0.0583 (12) | 0.0483 (11) | 0.0697 (13) | 0.0068 (9) | 0.0207 (10) | −0.0036 (10) |
C8B | 0.0650 (13) | 0.0423 (10) | 0.0672 (13) | 0.0103 (9) | 0.0225 (11) | 0.0015 (9) |
C9B | 0.0709 (15) | 0.0517 (12) | 0.0965 (18) | −0.0014 (11) | 0.0320 (13) | −0.0068 (12) |
N3A—C2A | 1.274 (2) | S1B—C1B | 1.681 (2) |
N3A—N2A | 1.374 (2) | O1B—C9B | 1.195 (3) |
S1A—C1A | 1.6976 (18) | N1B—C1B | 1.314 (3) |
O1A—C9A | 1.201 (3) | N1B—H1NB | 0.91 (3) |
N1A—C1A | 1.312 (3) | N1B—H2NB | 0.88 (3) |
N1A—H1NA | 0.84 (3) | C1B—N2B | 1.353 (3) |
N1A—H2NA | 0.87 (3) | N2B—N3B | 1.369 (2) |
C1A—N2A | 1.340 (2) | N2B—H3NB | 0.84 (2) |
N2A—H3NA | 0.84 (2) | C2B—N3B | 1.274 (3) |
C2A—C3A | 1.462 (2) | C2B—C3B | 1.457 (3) |
C2A—H2A | 0.9300 | C2B—H2B | 0.9300 |
C3A—C4A | 1.388 (2) | C3B—C8B | 1.392 (3) |
C3A—C8A | 1.393 (3) | C3B—C4B | 1.399 (3) |
C4A—C5A | 1.386 (3) | C4B—C5B | 1.375 (3) |
C4A—H4A | 0.9300 | C4B—H4B | 0.9300 |
C5A—C6A | 1.379 (3) | C5B—C6B | 1.382 (3) |
C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
C6A—C7A | 1.388 (3) | C6B—C7B | 1.391 (3) |
C6A—C9A | 1.476 (3) | C6B—C9B | 1.470 (3) |
C7A—C8A | 1.374 (3) | C7B—C8B | 1.376 (3) |
C7A—H7A | 0.9300 | C7B—H6B | 0.9300 |
C8A—H8A | 0.9300 | C8B—H7B | 0.9300 |
C9A—H9A | 0.9300 | C9B—H9B | 0.9300 |
C2A—N3A—N2A | 115.92 (16) | C1B—N1B—H1NB | 118 (2) |
C1A—N1A—H1NA | 122.5 (16) | C1B—N1B—H2NB | 119.2 (18) |
C1A—N1A—H2NA | 120.1 (16) | H1NB—N1B—H2NB | 122 (3) |
H1NA—N1A—H2NA | 117 (2) | N1B—C1B—N2B | 116.6 (2) |
N1A—C1A—N2A | 117.74 (17) | N1B—C1B—S1B | 123.36 (18) |
N1A—C1A—S1A | 123.28 (15) | N2B—C1B—S1B | 120.0 (2) |
N2A—C1A—S1A | 118.98 (15) | C1B—N2B—N3B | 119.7 (2) |
C1A—N2A—N3A | 119.56 (17) | C1B—N2B—H3NB | 120.4 (17) |
C1A—N2A—H3NA | 121.2 (15) | N3B—N2B—H3NB | 119.7 (16) |
N3A—N2A—H3NA | 119.0 (15) | N3B—C2B—C3B | 121.0 (2) |
N3A—C2A—C3A | 120.60 (17) | N3B—C2B—H2B | 119.5 |
N3A—C2A—H2A | 119.7 | C3B—C2B—H2B | 119.5 |
C3A—C2A—H2A | 119.7 | C2B—N3B—N2B | 116.96 (19) |
C4A—C3A—C8A | 119.25 (16) | C8B—C3B—C4B | 118.45 (19) |
C4A—C3A—C2A | 118.70 (17) | C8B—C3B—C2B | 122.07 (18) |
C8A—C3A—C2A | 122.03 (16) | C4B—C3B—C2B | 119.5 (2) |
C5A—C4A—C3A | 120.31 (17) | C5B—C4B—C3B | 121.1 (2) |
C5A—C4A—H4A | 119.8 | C5B—C4B—H4B | 119.5 |
C3A—C4A—H4A | 119.8 | C3B—C4B—H4B | 119.5 |
C6A—C5A—C4A | 120.11 (17) | C4B—C5B—C6B | 119.92 (19) |
C6A—C5A—H5A | 119.9 | C4B—C5B—H5B | 120.0 |
C4A—C5A—H5A | 119.9 | C6B—C5B—H5B | 120.0 |
C5A—C6A—C7A | 119.67 (17) | C5B—C6B—C7B | 119.61 (19) |
C5A—C6A—C9A | 119.37 (17) | C5B—C6B—C9B | 121.8 (2) |
C7A—C6A—C9A | 120.96 (18) | C7B—C6B—C9B | 118.6 (2) |
C8A—C7A—C6A | 120.50 (18) | C8B—C7B—C6B | 120.5 (2) |
C8A—C7A—H7A | 119.8 | C8B—C7B—H6B | 119.7 |
C6A—C7A—H7A | 119.8 | C6B—C7B—H6B | 119.7 |
C7A—C8A—C3A | 120.15 (17) | C7B—C8B—C3B | 120.43 (19) |
C7A—C8A—H8A | 119.9 | C7B—C8B—H7B | 119.8 |
C3A—C8A—H8A | 119.9 | C3B—C8B—H7B | 119.8 |
O1A—C9A—C6A | 125.3 (2) | O1B—C9B—C6B | 125.3 (3) |
O1A—C9A—H9A | 117.3 | O1B—C9B—H9B | 117.4 |
C6A—C9A—H9A | 117.3 | C6B—C9B—H9B | 117.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···N3A | 0.84 (3) | 2.32 (2) | 2.630 (2) | 102.0 (19) |
N1A—H1NA···O1Ai | 0.84 (3) | 2.41 (3) | 3.190 (3) | 154 (2) |
N1A—H2NA···S1Aii | 0.87 (3) | 2.52 (3) | 3.391 (2) | 172 (2) |
N2A—H3NA···S1Biii | 0.84 (2) | 2.50 (2) | 3.3270 (19) | 166.1 (19) |
N1B—H1NB···N3B | 0.91 (3) | 2.21 (3) | 2.619 (3) | 106 (3) |
N1B—H2NB···O1Biv | 0.88 (3) | 2.01 (3) | 2.857 (3) | 161 (3) |
N2B—H3NB···S1Av | 0.84 (2) | 2.58 (2) | 3.409 (2) | 171 (2) |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z; (iii) x, −y+3/2, z−1/2; (iv) x, y+1, z; (v) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···N3A | 0.84 (3) | 2.32 (2) | 2.630 (2) | 102.0 (19) |
N1A—H1NA···O1Ai | 0.84 (3) | 2.41 (3) | 3.190 (3) | 154 (2) |
N1A—H2NA···S1Aii | 0.87 (3) | 2.52 (3) | 3.391 (2) | 172 (2) |
N2A—H3NA···S1Biii | 0.84 (2) | 2.50 (2) | 3.3270 (19) | 166.1 (19) |
N1B—H1NB···N3B | 0.91 (3) | 2.21 (3) | 2.619 (3) | 106 (3) |
N1B—H2NB···O1Biv | 0.88 (3) | 2.01 (3) | 2.857 (3) | 161 (3) |
N2B—H3NB···S1Av | 0.84 (2) | 2.58 (2) | 3.409 (2) | 171 (2) |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z; (iii) x, −y+3/2, z−1/2; (iv) x, y+1, z; (v) x, −y+3/2, z+1/2. |
Acknowledgements
This research was supported by the European Rural Development Fund and the Spanish Ministry of Education and Science through project CTQ2010–19386/BQU.
References
Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738–5744. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967–974. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483–13502. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.