organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(4-formyl­benzyl­­idene)thio­semicarbazone

aDepartamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain
*Correspondence e-mail: ezequiel@uvigo.es

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 July 2014; accepted 25 July 2014; online 6 August 2014)

The asymmetric unit of the title compound, C9H9N3OS, contains two approximately planar mol­ecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å), with different conformations. In one of them, the C=O group is syn to the S atom and in the other it is anti. Each mol­ecule features an intra­molecular N—H⋯N hydrogen bond, which generates an S(5) ring. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating discrete networks; the syn mol­ecules form [010] chains and the anti mol­ecules form (100) sheets.

1. Related literature

For further synthetic details, see: Jagst et al. (2005[Jagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738-5744.]). For structure–biological activity relationships in thio­semicarbazones, see: Lukmantara et al. (2013[Lukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967-974.]). For their biological properties, see: Serda et al. (2012[Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483-13502.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H9N3OS

  • Mr = 207.25

  • Monoclinic, P 21 /c

  • a = 12.3888 (9) Å

  • b = 11.7972 (8) Å

  • c = 14.9428 (11) Å

  • β = 110.286 (1)°

  • V = 2048.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.51 × 0.44 × 0.33 mm

2.2. Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.746

  • 19018 measured reflections

  • 4920 independent reflections

  • 3344 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.03

  • 4920 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯N3A 0.84 (3) 2.32 (2) 2.630 (2) 102.0 (19)
N1A—H1NA⋯O1Ai 0.84 (3) 2.41 (3) 3.190 (3) 154 (2)
N1A—H2NA⋯S1Aii 0.87 (3) 2.52 (3) 3.391 (2) 172 (2)
N2A—H3NA⋯S1Biii 0.84 (2) 2.50 (2) 3.3270 (19) 166.1 (19)
N1B—H1NB⋯N3B 0.91 (3) 2.21 (3) 2.619 (3) 106 (3)
N1B—H2NB⋯O1Biv 0.88 (3) 2.01 (3) 2.857 (3) 161 (3)
N2B—H3NB⋯S1Av 0.84 (2) 2.58 (2) 3.409 (2) 171 (2)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The study of the thio­semicarbazones is inter­esting because they are compounds which show diverse biological properties (Serda et al., 2012) and pharmacological activities (Lukmantara et al., 2013). Also the thio­semicarbazones are of inter­est from a supra­molecular point of view since they can be functionalized to give different supra­molecular arrays by hydrogen bonds.

Structural commentary top

We report here the synthesis and structural characterization of (4-formyl­benzyl­idine)-thio­semicarbazone (Fig.1). The two molecules in the asymmetric unit are structurally different due to the different orientation of the carbonyl group respect to the thio­semicarbazone chain. The thio­semicarbazone moiety in both molecules shows an E conformation with the sulfur atom trans to the iminic nitro­gen N3 atom. The molecules labeled as B are linked into lineal chains by N—H···O hydrogen bonds with a d(N···O) of 2.857 (3) Å but the molecules labeled as A use the same kind of hydrogen bond with a longer d(N···O) of 3.190 (3) Å to form helical chains (Fig. 2). The two types of chains are packed by N—H···S hydrogen bonds with d(N—S) in the range 3.32-3.41 Å and (NHS) angles close to linearity (between 166 and 172°).

Synthesis and crystallization top

A solution of thio­semicarbazide (342mg, 3.72 mmol) in 50 ml of water was slowly added at 50°C to a solution of terephthaldicarboxaldehyde (500 mg, 3.73 mmol) in 100 ml water. Then the mixture was stirred at 50°C for 30 mins. Once cooled to room temperature, the yellow solid was filtered off and vacuum dried. Yellow prisms were obtained by recrystallization from EtOH/H2O (1:1) solution. Yield: 78%. M.pt: 212–214°C. IR data (KBr, cm-1): 3452w, 3328m, 3152m ν(NH); 2974w, 2863w ν(C—H aldehyde); 1686s ν(C=O); 1533s, 1281m ν(C=N), 830m, 793m ν(C=S). 1H NMR data (DMSO-d6, ppm): 10.60 (s, 1H, N(2)—H); 10.01 (s, 1H, C(1)—H); 8.32 (s, 1H, N(2)—H); 8.15 (s, 1H, N(2)—H); 8.09 (s, 1H, C(8)—H); 8.02 (d, 2H, J = 8.2 Hz, C(3,7)-H); 7.91 (d, 2H, J = 8.2 Hz, C(4,6)-H).

Related literature top

For further synthetic details, see: Jagst et al. (2005). For structure–biological activity relationships in thiosemicarbazones, see: Lukmantara et al. (2013). For their biological properties, see: Serda et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the two molecules of the title compound. Displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing showing the two different chains.
1-(4-Formylbenzylidene)thiosemicarbazone top
Crystal data top
C9H9N3OSF(000) = 864
Mr = 207.25Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.3888 (9) ÅCell parameters from 6097 reflections
b = 11.7972 (8) Åθ = 2.3–27.2°
c = 14.9428 (11) ŵ = 0.29 mm1
β = 110.286 (1)°T = 293 K
V = 2048.5 (3) Å3Prism, yellow
Z = 80.51 × 0.44 × 0.33 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3344 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.022
ϕ and ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.693, Tmax = 0.746k = 1515
19018 measured reflectionsl = 1919
4920 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.8755P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4920 reflectionsΔρmax = 0.36 e Å3
277 parametersΔρmin = 0.35 e Å3
Crystal data top
C9H9N3OSV = 2048.5 (3) Å3
Mr = 207.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.3888 (9) ŵ = 0.29 mm1
b = 11.7972 (8) ÅT = 293 K
c = 14.9428 (11) Å0.51 × 0.44 × 0.33 mm
β = 110.286 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3344 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.746Rint = 0.022
19018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
4920 reflectionsΔρmin = 0.35 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N3A0.89210 (14)0.63007 (12)0.01356 (11)0.0479 (4)
S1A0.90693 (5)0.91696 (4)0.13892 (4)0.06120 (17)
O1A0.89088 (17)0.16790 (14)0.29083 (12)0.0778 (5)
N1A0.97843 (19)0.83357 (16)0.03697 (14)0.0646 (5)
C1A0.92577 (17)0.81529 (15)0.05446 (14)0.0488 (4)
N2A0.88481 (15)0.71091 (13)0.08158 (13)0.0519 (4)
C2A0.84890 (17)0.53375 (15)0.04474 (14)0.0499 (4)
H2A0.81720.52140.11020.060*
C3A0.84875 (16)0.44243 (14)0.02136 (13)0.0446 (4)
C4A0.80002 (18)0.33905 (16)0.01569 (14)0.0536 (5)
H4A0.76590.33000.08130.064*
C5A0.80199 (18)0.24931 (15)0.04467 (14)0.0549 (5)
H5A0.76910.18030.01950.066*
C6A0.85265 (17)0.26217 (15)0.14207 (14)0.0487 (4)
C7A0.9008 (2)0.36573 (16)0.17931 (14)0.0576 (5)
H7A0.93480.37460.24500.069*
C8A0.89848 (19)0.45524 (16)0.11987 (14)0.0550 (5)
H8A0.93020.52450.14550.066*
C9A0.8559 (2)0.16499 (18)0.20519 (17)0.0615 (5)
H9A0.82860.09590.17630.074*
H1NA0.990 (2)0.782 (2)0.0779 (17)0.069 (7)*
H2NA1.007 (2)0.900 (2)0.0570 (17)0.075 (7)*
H3NA0.8488 (18)0.6956 (18)0.1392 (16)0.054 (6)*
S1B0.70719 (7)0.87078 (5)0.20508 (5)0.0836 (2)
O1B0.36864 (17)0.02352 (14)0.06781 (17)0.1027 (7)
N1B0.5055 (2)0.77556 (19)0.11523 (17)0.0728 (6)
C1B0.6141 (2)0.76241 (17)0.16872 (15)0.0633 (6)
N2B0.6506 (2)0.65472 (15)0.19199 (15)0.0659 (5)
C2B0.61285 (19)0.46749 (17)0.18659 (16)0.0596 (5)
H2B0.68660.45870.23100.072*
N3B0.57577 (16)0.56654 (14)0.15795 (13)0.0591 (4)
C3B0.54146 (18)0.36782 (16)0.15082 (15)0.0539 (5)
C4B0.5824 (2)0.26093 (18)0.18761 (17)0.0636 (6)
H4B0.65380.25490.23580.076*
C5B0.5189 (2)0.16464 (18)0.15366 (18)0.0663 (6)
H5B0.54770.09410.17840.080*
C6B0.41212 (19)0.17280 (17)0.08275 (16)0.0574 (5)
C7B0.37016 (19)0.27858 (17)0.04567 (16)0.0592 (5)
H6B0.29830.28430.00200.071*
C8B0.43420 (19)0.37484 (17)0.07894 (16)0.0583 (5)
H7B0.40560.44510.05320.070*
C9B0.3412 (2)0.07213 (19)0.0444 (2)0.0723 (6)
H9B0.26910.08380.00170.087*
H1NB0.463 (3)0.712 (3)0.093 (2)0.107 (10)*
H2NB0.478 (2)0.844 (2)0.1003 (19)0.085 (8)*
H3NB0.717 (2)0.642 (2)0.2304 (17)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N3A0.0572 (9)0.0343 (7)0.0505 (8)0.0015 (7)0.0167 (7)0.0081 (6)
S1A0.0797 (4)0.0362 (2)0.0594 (3)0.0022 (2)0.0134 (3)0.0123 (2)
O1A0.1133 (14)0.0633 (10)0.0600 (10)0.0069 (9)0.0341 (9)0.0169 (8)
N1A0.0936 (15)0.0363 (9)0.0541 (10)0.0053 (9)0.0130 (10)0.0050 (8)
C1A0.0554 (11)0.0351 (9)0.0545 (11)0.0034 (8)0.0174 (9)0.0043 (8)
N2A0.0682 (11)0.0343 (7)0.0479 (9)0.0020 (7)0.0135 (8)0.0067 (7)
C2A0.0602 (11)0.0375 (9)0.0477 (10)0.0014 (8)0.0131 (8)0.0043 (8)
C3A0.0498 (10)0.0347 (8)0.0480 (10)0.0006 (7)0.0151 (8)0.0032 (7)
C4A0.0647 (12)0.0430 (9)0.0447 (10)0.0084 (9)0.0082 (9)0.0010 (8)
C5A0.0638 (12)0.0367 (9)0.0586 (12)0.0116 (8)0.0141 (10)0.0017 (8)
C6A0.0576 (11)0.0383 (9)0.0507 (10)0.0004 (8)0.0193 (9)0.0057 (8)
C7A0.0817 (15)0.0445 (10)0.0439 (10)0.0040 (10)0.0183 (10)0.0002 (8)
C8A0.0774 (14)0.0351 (9)0.0498 (10)0.0068 (9)0.0187 (10)0.0045 (8)
C9A0.0775 (15)0.0449 (10)0.0641 (13)0.0005 (10)0.0271 (11)0.0082 (9)
S1B0.1164 (6)0.0470 (3)0.0657 (4)0.0135 (3)0.0042 (3)0.0020 (3)
O1B0.0916 (13)0.0436 (9)0.158 (2)0.0036 (9)0.0239 (13)0.0026 (11)
N1B0.0818 (15)0.0507 (11)0.0826 (14)0.0090 (11)0.0243 (12)0.0030 (11)
C1B0.0916 (17)0.0453 (11)0.0517 (11)0.0007 (11)0.0233 (11)0.0012 (9)
N2B0.0739 (13)0.0445 (9)0.0669 (12)0.0017 (9)0.0088 (10)0.0003 (8)
C2B0.0632 (13)0.0471 (11)0.0647 (13)0.0019 (10)0.0172 (10)0.0008 (9)
N3B0.0685 (11)0.0429 (9)0.0635 (10)0.0031 (8)0.0199 (9)0.0036 (8)
C3B0.0603 (12)0.0434 (10)0.0616 (12)0.0037 (9)0.0259 (10)0.0003 (9)
C4B0.0605 (13)0.0517 (11)0.0738 (14)0.0066 (10)0.0172 (11)0.0103 (10)
C5B0.0705 (15)0.0419 (10)0.0884 (16)0.0083 (10)0.0299 (13)0.0111 (10)
C6B0.0607 (13)0.0434 (10)0.0742 (14)0.0031 (9)0.0312 (11)0.0022 (9)
C7B0.0583 (12)0.0483 (11)0.0697 (13)0.0068 (9)0.0207 (10)0.0036 (10)
C8B0.0650 (13)0.0423 (10)0.0672 (13)0.0103 (9)0.0225 (11)0.0015 (9)
C9B0.0709 (15)0.0517 (12)0.0965 (18)0.0014 (11)0.0320 (13)0.0068 (12)
Geometric parameters (Å, º) top
N3A—C2A1.274 (2)S1B—C1B1.681 (2)
N3A—N2A1.374 (2)O1B—C9B1.195 (3)
S1A—C1A1.6976 (18)N1B—C1B1.314 (3)
O1A—C9A1.201 (3)N1B—H1NB0.91 (3)
N1A—C1A1.312 (3)N1B—H2NB0.88 (3)
N1A—H1NA0.84 (3)C1B—N2B1.353 (3)
N1A—H2NA0.87 (3)N2B—N3B1.369 (2)
C1A—N2A1.340 (2)N2B—H3NB0.84 (2)
N2A—H3NA0.84 (2)C2B—N3B1.274 (3)
C2A—C3A1.462 (2)C2B—C3B1.457 (3)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.388 (2)C3B—C8B1.392 (3)
C3A—C8A1.393 (3)C3B—C4B1.399 (3)
C4A—C5A1.386 (3)C4B—C5B1.375 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.379 (3)C5B—C6B1.382 (3)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.388 (3)C6B—C7B1.391 (3)
C6A—C9A1.476 (3)C6B—C9B1.470 (3)
C7A—C8A1.374 (3)C7B—C8B1.376 (3)
C7A—H7A0.9300C7B—H6B0.9300
C8A—H8A0.9300C8B—H7B0.9300
C9A—H9A0.9300C9B—H9B0.9300
C2A—N3A—N2A115.92 (16)C1B—N1B—H1NB118 (2)
C1A—N1A—H1NA122.5 (16)C1B—N1B—H2NB119.2 (18)
C1A—N1A—H2NA120.1 (16)H1NB—N1B—H2NB122 (3)
H1NA—N1A—H2NA117 (2)N1B—C1B—N2B116.6 (2)
N1A—C1A—N2A117.74 (17)N1B—C1B—S1B123.36 (18)
N1A—C1A—S1A123.28 (15)N2B—C1B—S1B120.0 (2)
N2A—C1A—S1A118.98 (15)C1B—N2B—N3B119.7 (2)
C1A—N2A—N3A119.56 (17)C1B—N2B—H3NB120.4 (17)
C1A—N2A—H3NA121.2 (15)N3B—N2B—H3NB119.7 (16)
N3A—N2A—H3NA119.0 (15)N3B—C2B—C3B121.0 (2)
N3A—C2A—C3A120.60 (17)N3B—C2B—H2B119.5
N3A—C2A—H2A119.7C3B—C2B—H2B119.5
C3A—C2A—H2A119.7C2B—N3B—N2B116.96 (19)
C4A—C3A—C8A119.25 (16)C8B—C3B—C4B118.45 (19)
C4A—C3A—C2A118.70 (17)C8B—C3B—C2B122.07 (18)
C8A—C3A—C2A122.03 (16)C4B—C3B—C2B119.5 (2)
C5A—C4A—C3A120.31 (17)C5B—C4B—C3B121.1 (2)
C5A—C4A—H4A119.8C5B—C4B—H4B119.5
C3A—C4A—H4A119.8C3B—C4B—H4B119.5
C6A—C5A—C4A120.11 (17)C4B—C5B—C6B119.92 (19)
C6A—C5A—H5A119.9C4B—C5B—H5B120.0
C4A—C5A—H5A119.9C6B—C5B—H5B120.0
C5A—C6A—C7A119.67 (17)C5B—C6B—C7B119.61 (19)
C5A—C6A—C9A119.37 (17)C5B—C6B—C9B121.8 (2)
C7A—C6A—C9A120.96 (18)C7B—C6B—C9B118.6 (2)
C8A—C7A—C6A120.50 (18)C8B—C7B—C6B120.5 (2)
C8A—C7A—H7A119.8C8B—C7B—H6B119.7
C6A—C7A—H7A119.8C6B—C7B—H6B119.7
C7A—C8A—C3A120.15 (17)C7B—C8B—C3B120.43 (19)
C7A—C8A—H8A119.9C7B—C8B—H7B119.8
C3A—C8A—H8A119.9C3B—C8B—H7B119.8
O1A—C9A—C6A125.3 (2)O1B—C9B—C6B125.3 (3)
O1A—C9A—H9A117.3O1B—C9B—H9B117.4
C6A—C9A—H9A117.3C6B—C9B—H9B117.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···N3A0.84 (3)2.32 (2)2.630 (2)102.0 (19)
N1A—H1NA···O1Ai0.84 (3)2.41 (3)3.190 (3)154 (2)
N1A—H2NA···S1Aii0.87 (3)2.52 (3)3.391 (2)172 (2)
N2A—H3NA···S1Biii0.84 (2)2.50 (2)3.3270 (19)166.1 (19)
N1B—H1NB···N3B0.91 (3)2.21 (3)2.619 (3)106 (3)
N1B—H2NB···O1Biv0.88 (3)2.01 (3)2.857 (3)161 (3)
N2B—H3NB···S1Av0.84 (2)2.58 (2)3.409 (2)171 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+2, z; (iii) x, y+3/2, z1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···N3A0.84 (3)2.32 (2)2.630 (2)102.0 (19)
N1A—H1NA···O1Ai0.84 (3)2.41 (3)3.190 (3)154 (2)
N1A—H2NA···S1Aii0.87 (3)2.52 (3)3.391 (2)172 (2)
N2A—H3NA···S1Biii0.84 (2)2.50 (2)3.3270 (19)166.1 (19)
N1B—H1NB···N3B0.91 (3)2.21 (3)2.619 (3)106 (3)
N1B—H2NB···O1Biv0.88 (3)2.01 (3)2.857 (3)161 (3)
N2B—H3NB···S1Av0.84 (2)2.58 (2)3.409 (2)171 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y+2, z; (iii) x, y+3/2, z1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2.
 

Acknowledgements

This research was supported by the European Rural Development Fund and the Spanish Ministry of Education and Science through project CTQ2010–19386/BQU.

References

First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738–5744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967–974.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSerda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). Molecules, 17, 13483–13502.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds