organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(2E)-3-(4-meth­­oxy­phen­yl)prop-2-eno­yl]phenyl benzoate

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 July 2014; accepted 11 August 2014; online 16 August 2014)

In the title compound, C23H18O4, the meth­oxy­benzene ring and attached C=C grouping are disordered over two sets of sites in a 0.823 (5):0.177 (5) ratio. The dihedral angles between the central benzene ring and the pendant phenyl and meth­oxy­benzene ring (major orientation) are 51.21 (1) and 51.6 (1)°, respectively. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(28) loops.

1. Related literature

For background to flavenoids, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Rackova et al. (2005[Rackova, L., Firakova, S., Kostalova, D., Stefek, M., Sturdik, E. & Majekova, M. (2005). Bioorg. Med. Chem. 13, 6477-6484.]); Harborne & Williams (2000[Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481-504.]). For related structures, see: Moreno-Fuquen et al. (2014[Moreno-Fuquen, R., Rendón, M. & Kennedy, A. R. (2014). Acta Cryst. E70, o194.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.]); Sathya et al. (2014[Sathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593-o594.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18O4

  • Mr = 358.37

  • Monoclinic, P 21 /c

  • a = 20.146 (5) Å

  • b = 14.513 (5) Å

  • c = 6.187 (5) Å

  • β = 94.828 (5)°

  • V = 1802.5 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.978

  • 17041 measured reflections

  • 3170 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.195

  • S = 1.11

  • 3170 reflections

  • 320 parameters

  • 334 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.93 2.56 3.280 (3) 135
C21′—H21′⋯O1i 0.93 2.65 3.546 (7) 163
C23′—H23F⋯O1ii 0.96 2.50 3.24 (7) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flavonoids belong to a large group of abundant plant secondary metabolites, which can be found in vascular plants such as ferns, conifers and flowering plants (Di Carlo et al.,1999). Natural and synthetic flavonoids are therefore of considerable interest in the development of new therapeutic agents for various diseases and are generally believed to be non-toxic compounds since they are widely distributed in the human diet (Rackova et al.., 2005; Harborne et al., 2000).

In the compound, the phenyl benzoate and chalcone groups are linked by a phenyl ring (B). The C—O bond length 1.219 (6) Å indicate the double bond character. The C—O bond length of phenyl benzoate 1.403 (4) & 1.197 (4) Å, respectively, indicate the single and double bond characters and are comparable with similar reported structure [Moreno-Fuquen et al.,2014]. The bond angles C11—C14—C15(118.7 (5)°, C15—C16—C17(125.9 (5)°) are slightly shorter than the normal values but are comparable with those in similar reported structure [Sathya et al.,2014 & Jasinski et al.,2011]. This may be due to the presence of keto group and the associated steric forces. The prop-2-en-1-one group is twisted slightly with a C15—C16—C17—C22 & C12—C11—C14—O3 torsion angle of [167.8 (4)° & 155.5 (5)°], respectively, and are in good agreement with similar reported structures (Sathya et al., 2014 & Jasinski et al., 2011). The central ester moiety[O1/C7/O2] is twisted(C9—C8—O2—C7/C13—C8—O2—C7) away from the benzene ring on both sides by 59.5 (3)&-126.4 (3)°, respectively, and are comparable with similar reported structure (Moreno-Fuquen et al.,2014)

In the crystal, the symmetry related molecules linked by C—H···O type hydrogen bonds forming dimer R22 (28), described by the graph set motif. These dimer units inturn linked by C—H···O type hydrogen bond results in a molecular chain running along [100] direction.

Related literature top

For background to flavenoids, see: Di Carlo et al. (1999); Rackova et al. (2005); Harborne & Williams (2000). For related structures, see: Moreno-Fuquen et al. (2014); Jasinski et al. (2011); Sathya et al. (2014).

Experimental top

The chalcone derivative is prepared by two steps.

In a 250 mL round-bottomed flask 4-hydroxyacetophenone (0.05 mol) and 4-methoxybenzaldehyde (0.05 mol) were taken to which 120 mL of absolute alcohol was added and stirred at room temperature for a span of 5 minutes. Then 20 mL of 20% sodium hydroxide solution was added and the mixture was stirred for 2 h. The precipitate generated by adding sufficient amount of dilute hydrochloric acid was filtered, washed with water and dried. The crude product was recrystallized twice from absolute alcohol. % of yield: 90.

The second step involves esterification reaction: in a 250 mL round-bottomed flask the chalcone (0.02 mol) was taken in, to which 120 mL of ethyl methyl ketone was added and stirred at room temperature. After a span of 5 minutes, triethylamine (0.04 mol) was added and the mixture was stirred for 15 minutes. Then benzoylchloride (0.02 mol) was added and the reaction mixture was stirred at room temperature for about 2 h. A white precipitate of triethyl ammonium chloride was formed. It was filtered and the filterate was evaporated to get the crude product. The crude product was recrystallized twice from ethyl methyl ketone solution. % of yield: 95.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distance of 0.93–0.96 Å, with Uiso(H)= 1.5 Ueq(c-methyl) and Uiso(H)= 1.2Ueq(C) for other H atom. The phenyl benzoate group of the molecule was refined using a disorder model, with relative occupancies of approximately 82.3% and 17.7%.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Experimental procedure.
4-[(2E)-3-(4-Methoxyphenyl)prop-2-enoyl]phenyl benzoate top
Crystal data top
C23H18O4F(000) = 752
Mr = 358.37Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3462 reflections
a = 20.146 (5) Åθ = 2.6–25.6°
b = 14.513 (5) ŵ = 0.09 mm1
c = 6.187 (5) ÅT = 293 K
β = 94.828 (5)°Block, yellow
V = 1802.5 (16) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3170 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and ϕ scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.969, Tmax = 0.978k = 1717
17041 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0812P)2 + 1.0118P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3170 reflectionsΔρmax = 0.21 e Å3
320 parametersΔρmin = 0.17 e Å3
334 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (17)
Crystal data top
C23H18O4V = 1802.5 (16) Å3
Mr = 358.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.146 (5) ŵ = 0.09 mm1
b = 14.513 (5) ÅT = 293 K
c = 6.187 (5) Å0.35 × 0.30 × 0.25 mm
β = 94.828 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2523 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.045
17041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056334 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.11Δρmax = 0.21 e Å3
3170 reflectionsΔρmin = 0.17 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.89122 (16)0.6485 (2)0.0011 (5)0.0631 (8)
H10.85060.66590.06940.076*
C20.94911 (18)0.6612 (2)0.0966 (5)0.0746 (9)
H20.94740.68820.23320.090*
C31.00923 (18)0.6348 (2)0.0027 (6)0.0789 (10)
H31.04800.64380.06600.095*
C41.01200 (17)0.5948 (3)0.2058 (6)0.0773 (9)
H41.05270.57600.27370.093*
C50.95459 (15)0.5829 (2)0.3071 (5)0.0665 (8)
H50.95660.55680.44480.080*
C60.89386 (13)0.60929 (18)0.2065 (4)0.0514 (7)
C70.83392 (14)0.59524 (18)0.3243 (5)0.0540 (7)
C80.71707 (13)0.62650 (18)0.3021 (4)0.0515 (7)
C90.70646 (14)0.66395 (18)0.5013 (5)0.0555 (7)
H90.74170.68910.58880.067*
C100.64306 (14)0.66356 (18)0.5684 (5)0.0555 (7)
H100.63560.68710.70400.067*
C110.59009 (14)0.62820 (18)0.4352 (5)0.0575 (7)
C120.60283 (15)0.5913 (2)0.2357 (5)0.0687 (9)
H120.56790.56730.14490.082*
C130.66607 (15)0.5899 (2)0.1713 (5)0.0625 (8)
H130.67420.56410.03850.075*
O10.83266 (11)0.55704 (16)0.4953 (3)0.0757 (7)
O20.77922 (9)0.63206 (14)0.2161 (3)0.0613 (6)
C140.5205 (2)0.6314 (5)0.4965 (9)0.0649 (15)0.823 (5)
C150.4662 (2)0.6328 (4)0.3246 (11)0.0682 (15)0.823 (5)
H150.47490.64880.18420.082*0.823 (5)
C160.40600 (19)0.6119 (2)0.3661 (7)0.0610 (10)0.823 (5)
H160.39960.59460.50760.073*0.823 (5)
O40.16821 (8)0.61934 (12)0.1635 (3)0.0731 (16)0.823 (5)
C200.22860 (8)0.61731 (12)0.0591 (3)0.0506 (9)0.823 (5)
C210.23058 (8)0.57341 (12)0.1410 (3)0.0521 (10)0.823 (5)
H210.19250.54540.18530.063*0.823 (5)
C220.28953 (8)0.57131 (12)0.2749 (3)0.0545 (10)0.823 (5)
H220.29090.54190.40880.065*0.823 (5)
C170.34650 (8)0.61310 (12)0.2087 (3)0.0517 (11)0.823 (5)
C180.34452 (8)0.65700 (12)0.0085 (3)0.0569 (10)0.823 (5)
H180.38260.68500.03580.068*0.823 (5)
C190.28557 (8)0.65910 (12)0.1254 (3)0.0567 (11)0.823 (5)
H190.28420.68850.25930.068*0.823 (5)
O30.5124 (2)0.6334 (5)0.6900 (8)0.0909 (14)0.823 (5)
C230.1593 (5)0.6736 (9)0.3550 (11)0.073 (2)0.823 (5)
H23A0.17040.73650.32090.109*0.823 (5)
H23B0.11370.66990.41350.109*0.823 (5)
H23C0.18780.65090.45990.109*0.823 (5)
C14'0.5326 (7)0.624 (3)0.575 (3)0.063 (6)0.177 (5)
C15'0.4574 (6)0.6085 (10)0.476 (2)0.038 (3)0.177 (5)
H15'0.42620.58440.56330.046*0.177 (5)
C16'0.4385 (10)0.6305 (14)0.263 (3)0.042 (3)0.177 (5)
H16'0.47300.65180.18520.050*0.177 (5)
O4'0.1697 (4)0.6196 (6)0.1703 (13)0.060 (6)0.177 (5)
C20'0.2427 (4)0.6185 (6)0.0378 (13)0.062 (4)0.177 (5)
C21'0.2604 (4)0.5803 (6)0.1649 (13)0.050 (4)0.177 (5)
H21'0.22830.55200.24170.060*0.177 (5)
C22'0.3262 (4)0.5842 (6)0.2528 (13)0.045 (4)0.177 (5)
H22'0.33800.55860.38840.054*0.177 (5)
C17'0.3742 (4)0.6264 (6)0.1381 (13)0.044 (3)0.177 (5)
C18'0.3565 (4)0.6646 (6)0.0646 (13)0.069 (4)0.177 (5)
H18'0.38870.69290.14130.083*0.177 (5)
C19'0.2908 (4)0.6607 (6)0.1525 (13)0.063 (4)0.177 (5)
H19'0.27900.68630.28810.076*0.177 (5)
O3'0.5304 (9)0.628 (2)0.774 (2)0.076 (5)0.177 (5)
C23'0.161 (3)0.661 (5)0.380 (6)0.095 (14)0.177 (5)
H23D0.19320.70930.38960.142*0.177 (5)
H23E0.11710.68530.40420.142*0.177 (5)
H23F0.16800.61490.48840.142*0.177 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (2)0.0635 (19)0.0548 (17)0.0032 (14)0.0081 (14)0.0041 (14)
C20.089 (3)0.073 (2)0.0646 (19)0.0015 (17)0.0248 (18)0.0038 (16)
C30.073 (2)0.080 (2)0.088 (2)0.0085 (18)0.0321 (19)0.0092 (19)
C40.061 (2)0.088 (2)0.083 (2)0.0019 (17)0.0072 (17)0.0069 (19)
C50.0627 (19)0.070 (2)0.0667 (19)0.0064 (15)0.0046 (15)0.0015 (16)
C60.0607 (17)0.0449 (15)0.0492 (15)0.0006 (12)0.0076 (12)0.0016 (11)
C70.0587 (17)0.0467 (15)0.0565 (16)0.0035 (12)0.0039 (13)0.0043 (13)
C80.0540 (16)0.0437 (14)0.0567 (16)0.0053 (11)0.0032 (12)0.0052 (12)
C90.0545 (17)0.0505 (15)0.0603 (17)0.0017 (12)0.0031 (13)0.0034 (13)
C100.0613 (18)0.0482 (15)0.0569 (16)0.0027 (12)0.0036 (13)0.0027 (13)
C110.0544 (17)0.0446 (15)0.0727 (19)0.0032 (12)0.0010 (14)0.0049 (13)
C120.0598 (19)0.0595 (18)0.083 (2)0.0052 (14)0.0134 (16)0.0228 (16)
C130.067 (2)0.0611 (18)0.0575 (17)0.0132 (14)0.0039 (14)0.0113 (14)
O10.0743 (14)0.0904 (16)0.0639 (13)0.0121 (11)0.0139 (10)0.0304 (12)
O20.0593 (12)0.0684 (13)0.0569 (12)0.0094 (9)0.0094 (9)0.0141 (10)
C140.057 (3)0.059 (3)0.077 (3)0.004 (3)0.001 (3)0.009 (3)
C150.056 (3)0.064 (3)0.087 (4)0.001 (3)0.018 (3)0.001 (3)
C160.065 (2)0.0484 (19)0.071 (2)0.0033 (16)0.015 (2)0.0013 (17)
O40.074 (3)0.082 (3)0.065 (3)0.010 (3)0.013 (3)0.005 (3)
C200.056 (2)0.0449 (19)0.0518 (19)0.0005 (15)0.0107 (16)0.0033 (16)
C210.060 (2)0.0455 (19)0.053 (2)0.0032 (16)0.0162 (17)0.0025 (15)
C220.063 (3)0.0454 (19)0.056 (2)0.0036 (18)0.013 (2)0.0043 (16)
C170.065 (3)0.040 (2)0.051 (2)0.0039 (19)0.013 (2)0.0008 (17)
C180.060 (2)0.048 (2)0.063 (3)0.0060 (16)0.0084 (18)0.0041 (18)
C190.068 (3)0.051 (2)0.053 (2)0.001 (2)0.015 (2)0.0058 (19)
O30.058 (3)0.125 (3)0.091 (3)0.003 (3)0.013 (2)0.003 (3)
C230.062 (3)0.101 (5)0.056 (4)0.007 (3)0.005 (3)0.004 (3)
C14'0.034 (8)0.062 (9)0.086 (12)0.019 (8)0.030 (9)0.010 (11)
C15'0.023 (6)0.050 (6)0.044 (6)0.002 (5)0.012 (5)0.006 (5)
C16'0.040 (7)0.041 (6)0.049 (8)0.002 (7)0.035 (6)0.006 (6)
O4'0.054 (10)0.061 (10)0.066 (10)0.015 (9)0.018 (9)0.003 (10)
C20'0.066 (7)0.056 (7)0.064 (7)0.012 (6)0.001 (6)0.012 (7)
C21'0.047 (8)0.050 (7)0.055 (7)0.003 (6)0.020 (6)0.003 (6)
C22'0.053 (8)0.054 (8)0.031 (6)0.007 (7)0.025 (7)0.017 (6)
C17'0.056 (6)0.039 (6)0.041 (6)0.009 (5)0.035 (5)0.007 (5)
C18'0.095 (9)0.063 (8)0.051 (8)0.007 (7)0.007 (7)0.000 (7)
C19'0.068 (8)0.054 (8)0.067 (8)0.008 (8)0.002 (7)0.001 (7)
O3'0.045 (9)0.111 (11)0.070 (11)0.009 (8)0.016 (7)0.006 (11)
C23'0.15 (3)0.079 (19)0.051 (17)0.015 (19)0.010 (18)0.029 (18)
Geometric parameters (Å, º) top
C1—C21.371 (4)C20—C211.3900
C1—C61.389 (4)C20—C191.3900
C1—H10.9300C21—C221.3900
C2—C31.366 (5)C21—H210.9300
C2—H20.9300C22—C171.3900
C3—C41.381 (5)C22—H220.9300
C3—H30.9300C17—C181.3900
C4—C51.372 (4)C18—C191.3900
C4—H40.9300C18—H180.9300
C5—C61.379 (4)C19—H190.9300
C5—H50.9300C23—H23A0.9600
C6—C71.476 (4)C23—H23B0.9600
C7—O11.196 (3)C23—H23C0.9600
C7—O21.351 (3)C14'—O3'1.234 (11)
C8—C131.361 (4)C14'—C15'1.60 (2)
C8—C91.379 (4)C15'—C16'1.38 (3)
C8—O21.403 (3)C15'—H15'0.9300
C9—C101.376 (4)C16'—C17'1.45 (2)
C9—H90.9300C16'—H16'0.9300
C10—C111.391 (4)O4'—C23'1.426 (9)
C10—H100.9300O4'—C20'1.6236
C11—C121.389 (4)C20'—C21'1.3900
C11—C141.484 (5)C20'—C19'1.3900
C11—C14'1.505 (10)C21'—C22'1.3900
C12—C131.367 (4)C21'—H21'0.9300
C12—H120.9300C22'—C17'1.3900
C13—H130.9300C22'—H22'0.9300
C14—O31.222 (6)C17'—C18'1.3900
C14—C151.460 (7)C18'—C19'1.3900
C15—C161.297 (6)C18'—H18'0.9300
C15—H150.9300C19'—H19'0.9300
C16—C171.480 (4)C23'—H23D0.9600
C16—H160.9300C23'—H23E0.9600
O4—C201.3287C23'—H23F0.9600
O4—C231.421 (5)
C2—C1—C6119.3 (3)O4—C20—C21113.5
C2—C1—H1120.3O4—C20—C19126.3
C6—C1—H1120.3C21—C20—C19120.0
C3—C2—C1121.3 (3)C22—C21—C20120.0
C3—C2—H2119.4C22—C21—H21120.0
C1—C2—H2119.4C20—C21—H21120.0
C2—C3—C4119.6 (3)C21—C22—C17120.0
C2—C3—H3120.2C21—C22—H22120.0
C4—C3—H3120.2C17—C22—H22120.0
C5—C4—C3119.8 (3)C22—C17—C18120.0
C5—C4—H4120.1C22—C17—C16116.38 (18)
C3—C4—H4120.1C18—C17—C16123.54 (18)
C4—C5—C6120.6 (3)C17—C18—C19120.0
C4—C5—H5119.7C17—C18—H18120.0
C6—C5—H5119.7C19—C18—H18120.0
C5—C6—C1119.4 (3)C18—C19—C20120.0
C5—C6—C7118.0 (3)C18—C19—H19120.0
C1—C6—C7122.6 (3)C20—C19—H19120.0
O1—C7—O2123.0 (3)O3'—C14'—C11131.7 (18)
O1—C7—C6125.4 (3)O3'—C14'—C15'106.0 (12)
O2—C7—C6111.6 (2)C11—C14'—C15'122.3 (13)
C13—C8—C9121.3 (3)C16'—C15'—C14'120.6 (15)
C13—C8—O2116.7 (3)C16'—C15'—H15'119.7
C9—C8—O2121.7 (2)C14'—C15'—H15'119.7
C10—C9—C8119.1 (3)C15'—C16'—C17'131.3 (16)
C10—C9—H9120.5C15'—C16'—H16'114.3
C8—C9—H9120.5C17'—C16'—H16'114.3
C9—C10—C11120.5 (3)C23'—O4'—C20'120 (2)
C9—C10—H10119.7C21'—C20'—C19'120.0
C11—C10—H10119.7C21'—C20'—O4'127.7
C12—C11—C10118.6 (3)C19'—C20'—O4'112.3
C12—C11—C14119.3 (3)C20'—C21'—C22'120.0
C10—C11—C14122.1 (3)C20'—C21'—H21'120.0
C12—C11—C14'134.9 (11)C22'—C21'—H21'120.0
C10—C11—C14'105.2 (10)C17'—C22'—C21'120.0
C14—C11—C14'20.7 (7)C17'—C22'—H22'120.0
C13—C12—C11120.8 (3)C21'—C22'—H22'120.0
C13—C12—H12119.6C18'—C17'—C22'120.0
C11—C12—H12119.6C18'—C17'—C16'127.7 (8)
C8—C13—C12119.7 (3)C22'—C17'—C16'112.1 (8)
C8—C13—H13120.1C17'—C18'—C19'120.0
C12—C13—H13120.1C17'—C18'—H18'120.0
C7—O2—C8120.4 (2)C19'—C18'—H18'120.0
O3—C14—C15124.1 (5)C18'—C19'—C20'120.0
O3—C14—C11117.2 (4)C18'—C19'—H19'120.0
C15—C14—C11118.7 (5)C20'—C19'—H19'120.0
C16—C15—C14120.5 (6)O4'—C23'—H23D109.5
C16—C15—H15119.7O4'—C23'—H23E109.5
C14—C15—H15119.7H23D—C23'—H23E109.5
C15—C16—C17125.9 (5)O4'—C23'—H23F109.5
C15—C16—H16117.0H23D—C23'—H23F109.5
C17—C16—H16117.0H23E—C23'—H23F109.5
C20—O4—C23117.6 (4)
C6—C1—C2—C30.9 (5)C23—O4—C20—C21171.5 (7)
C1—C2—C3—C40.2 (5)C23—O4—C20—C193.9 (7)
C2—C3—C4—C50.8 (5)O4—C20—C21—C22175.8
C3—C4—C5—C61.0 (5)C19—C20—C21—C220.0
C4—C5—C6—C10.2 (5)C20—C21—C22—C170.0
C4—C5—C6—C7179.6 (3)C21—C22—C17—C180.0
C2—C1—C6—C50.8 (4)C21—C22—C17—C16176.82 (17)
C2—C1—C6—C7178.6 (3)C15—C16—C17—C22167.8 (4)
C5—C6—C7—O15.3 (4)C15—C16—C17—C1815.6 (5)
C1—C6—C7—O1175.3 (3)C22—C17—C18—C190.0
C5—C6—C7—O2174.1 (2)C16—C17—C18—C19176.58 (18)
C1—C6—C7—O25.3 (4)C17—C18—C19—C200.0
C13—C8—C9—C100.4 (4)O4—C20—C19—C18175.2
O2—C8—C9—C10174.3 (2)C21—C20—C19—C180.0
C8—C9—C10—C111.7 (4)C12—C11—C14'—O3'150 (3)
C9—C10—C11—C121.6 (4)C10—C11—C14'—O3'16 (4)
C9—C10—C11—C14176.5 (4)C14—C11—C14'—O3'163 (8)
C9—C10—C11—C14'170.5 (15)C12—C11—C14'—C15'27 (4)
C10—C11—C12—C130.1 (5)C10—C11—C14'—C15'166 (2)
C14—C11—C12—C13178.0 (4)C14—C11—C14'—C15'19 (2)
C14'—C11—C12—C13164.9 (18)O3'—C14'—C15'—C16'159 (2)
C9—C8—C13—C121.0 (4)C11—C14'—C15'—C16'23 (4)
O2—C8—C13—C12173.1 (3)C14'—C15'—C16'—C17'177 (2)
C11—C12—C13—C81.2 (5)C23'—O4'—C20'—C21'179 (3)
O1—C7—O2—C80.2 (4)C23'—O4'—C20'—C19'0 (3)
C6—C7—O2—C8179.6 (2)C19'—C20'—C21'—C22'0.0
C13—C8—O2—C7126.4 (3)O4'—C20'—C21'—C22'178.8
C9—C8—O2—C759.5 (3)C20'—C21'—C22'—C17'0.0
C12—C11—C14—O3155.5 (5)C21'—C22'—C17'—C18'0.0
C10—C11—C14—O326.5 (8)C21'—C22'—C17'—C16'175.2 (10)
C14'—C11—C14—O312 (4)C15'—C16'—C17'—C18'167.7 (15)
C12—C11—C14—C1525.0 (7)C15'—C16'—C17'—C22'7 (2)
C10—C11—C14—C15153.0 (5)C22'—C17'—C18'—C19'0.0
C14'—C11—C14—C15169 (5)C16'—C17'—C18'—C19'174.4 (11)
O3—C14—C15—C1618.4 (10)C17'—C18'—C19'—C20'0.0
C11—C14—C15—C16162.1 (5)C21'—C20'—C19'—C18'0.0
C14—C15—C16—C17178.2 (4)O4'—C20'—C19'—C18'178.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.563.280 (3)135
C21—H21···O1i0.932.653.546 (7)163
C23—H23F···O1ii0.962.503.24 (7)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.563.280 (3)135
C21'—H21'···O1i0.932.653.546 (7)163
C23'—H23F···O1ii0.962.503.24 (7)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Rendón, M. & Kennedy, A. R. (2014). Acta Cryst. E70, o194.  CSD CrossRef IUCr Journals Google Scholar
First citationRackova, L., Firakova, S., Kostalova, D., Stefek, M., Sturdik, E. & Majekova, M. (2005). Bioorg. Med. Chem. 13, 6477–6484.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSathya, S., Reuben Jonathan, D., Prathebha, K., Usha, G. & Jovita, J. (2014). Acta Cryst. E70, o593–o594.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds