research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 6-meth­­oxy-11-(4-meth­­oxy­phen­yl)-16-methyl-14-phenyl-8,12-dioxa-14,15-di­aza­tetra­cyclo­[8.7.0.02,7.013,17]hepta­deca-2(7),3,5,13(17),15-penta­ene-10-carboxyl­ate

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and dDepartment of Physics, Bharathidasan Engineering College, Nattrampalli, Vellore 635 854, India
*Correspondence e-mail: bhakthadoss@yahoo.com, smurugavel27@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 July 2014; accepted 4 August 2014; online 9 August 2014)

In the title compound, C30H28N2O6, the pyran ring adopts a slightly distorted half-chair conformation and the pyrone ring adopts an envelope conformation, with the C atom bearing the carboxyl­ate group as the flap. The pyrazole ring [maximum deviation = 0.002 (2) Å] forms a dihedral angle of 13.2 (1)° with the attached benzene ring. The near-planar atoms of the pyran ring and the pyrazole ring are close to coplanar, the dihedral angles between their mean planes being 6.4 (1)°. The dihedral angle between the pyrone ring and the benzene ring of the chromene unit is 10.7 (1)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, C—H⋯O inter­actions generate supra­molecular chains propagating in [100] and these are connected into double layers that stack along the c-axis direction by weak ππ inter­actions between pyrazole rings [centroid–centroid distance = 3.801 (1) Å].

1. Chemical context

Chromenes are components of many natural products (Ellis & Lockhart, 2007[Ellis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1-1196. London: Wiley-VCH.]) and incorporated in numerous medicinal drugs as significant chromophores. They have shown to display anti­viral, anti­tumoral, anti-anaphylactic, spasmolytic, diuretic and clotting activity (Horton et al., 2003[Horton, D. A., Boume, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]). Furthermore, they can be used as photo-active materials, biodegradable agrochemicals and pigments. As part of our studies in this area, the crystal structure of the title compound has been determined and the results are presented here.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows a displacement ellipsoid plot of the title compound, with the atom-numbering scheme. The pyran ring (O1/C1/C3/C4/C5/C13) adopts a slightly distorted half-chair conformation, with the local twofold rotation axis running through the mid-points of bonds C3—C1 and C5—C4 [asymmetry parameter (Duax et al., 1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New York: John Wiley.]) ΔC2[C3–C1] = 7.5 (2)°] The pyrone ring (O2/C5/C6/C7/C12/C13) adopts an envelope conformation, with the C5 [displacement = 0.347 (1) Å] atom as the flap and with puckering parameters q2 = 0.3973 (2) Å and φ2 = 119.7 (2)°. The pyrazole ring is approximately planar, with a maximum deviation of 0.002 (2) Å for atom C2, and forms a dihedral angle of 13.2 (1)° with the attached benzene ring. The planar atoms of the pyran ring and the pyrazole ring are close to coplanar, the dihedral angles between their mean planes being 6.4 (1)°. Moreover, the planar atoms of the pyrone ring and the benzene ring of the chromene unit are also almost coplanar, the dihedral angle between their mean planes being 10.7 (1)°. The geometric parameters of the title mol­ecule agree well with those reported for similar structures (Kanchanadevi et al., 2013a[Kanchanadevi, J., Anbalagan, G., Kannan, D., Bakthadoss, M. & Manivannan, V. (2013a). Acta Cryst. E69, o1746.],b[Kanchanadevi, J., Anbalagan, G., Kannan, D., Gunasekaran, B., Manivannan, V. & Bakthadoss, N. (2013b). Acta Cryst. E69, o1035.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.

3. Supra­molecular features

The mol­ecular conformation is stabilized by an intra­molecular C19—H19⋯O1 hydrogen bond, which generates an S(6) ring motif. The crystal packing features C17—H17⋯O3 hydrogen bonds, which form a supra­molecular chain along the a axis. This chain is connected into double layer that stacks along the c axis (Table 1[link] and Fig. 2[link]; Cg is the centroid of the pyrazole N1/N2/C3/C1/C2 ring) by ππ inter­actions, with CgCgii = 3.801 (1) Å [symmetry code: (ii) −x, −y, −z].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/N2/C3/C1/C2 ring pyrazole.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O1 0.93 2.28 2.907 (2) 124
C17—H17⋯O3i 0.93 2.54 3.433 (2) 161
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
A view of stacking of supra­molecular double layer along the c axis. The C—H⋯O and ππ inter­actions are shown as green and blue dotted lines, respectively.

4. Database survey

The title compound, (I)[link], is closely related to 16-methyl-11-(2-methyl­phen­yl)-14-phenyl-8,12-dioxa-14,15-di­aza­tetra­cyclo[8.7.0.02,7.013,17]hepta­deca-2(7),3,5,13 (17),15-penta­ene-10-carbo­nitrile, (II) (Kanchanadevi et al., 2013a[Kanchanadevi, J., Anbalagan, G., Kannan, D., Bakthadoss, M. & Manivannan, V. (2013a). Acta Cryst. E69, o1746.]), and methyl 11,14,16-triphenyl-8,12-dioxa-14,15-di­aza­tetra­cyclo[8.7.0.02,7.013,17]hepta­deca-2(7),3,5,13 (17),15-penta­ene-10-carboxyl­ate, (III) (Kanchanadevi et al., 2013b[Kanchanadevi, J., Anbalagan, G., Kannan, D., Gunasekaran, B., Manivannan, V. & Bakthadoss, N. (2013b). Acta Cryst. E69, o1035.]). The pyran and pyrone rings of (II) and (III) adopt half-chair conformations, while the pyran and pyrone rings of (I)[link] adopt half-chair and envelope conformations, respectively. The pyrazole ring forms dihedral angles of 13.2 (1), 16.9 (1) and 15.1 (1)°, respectively, for (I)[link], (II) and (III) with the attached benzene ring.

5. Synthesis and crystallization

A mixture of (E)-methyl 2-[(2-formyl-6-meth­oxy­phen­oxy)meth­yl]-3-(4-meth­oxy­phen­yl)acrylate (0.356g, 1mmol) and 3-methyl-1-phenyl-1H-pyrazol-5-one (0.174 g, 1 mmol) was placed in a round-bottomed flask and melted at 453 K for 1 h. After completion of the reaction as indicated by thin-layer chromatography, the crude product was washed with 5 ml of an ethyl acetate and hexane mixture (1:49 ratio), which successfully provided the title compound as a colourless solid in 93% yield. Colourless blocks were obtained by slow evaporation of an ethyl acetate solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were positioned geometrically, with C—H = 0.93–0.98 Å, and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Owing to poor agreement, the reflections 100, 011 and 100 were omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C30H28N2O6
Mr 512.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.9549 (5), 14.5280 (5), 13.8522 (4)
β (°) 100.433 (2)
V3) 2564.00 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 23615, 4509, 3508
Rint 0.032
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.02
No. of reflections 4509
No. of parameters 348
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Chromenes are components of many natural products (Ellis & Lockhart, 2007) and incorporated in numerous medicinal drugs as significant chromophores. They have shown to display anti­viral, anti­tumoral, anti-anaphylactic, spasmolytic, diuretic and clotting activity (Horton et al., 2003). Furthermore, they can be used as photo-active materials, biodegradable agrochemicals and pigments. As part of our studies in this area, the crystal structure of the title compound has been determined and the results are presented here.

Structural commentary top

Fig. 1 shows a displacement ellipsoid plot of the title compound, with the atom-numbering scheme. The pyran ring (O1/C1/C3/C4/C5/C13) adopts a slightly distorted half-chair conformation, with the local twofold rotation axis running through the mid-points of bonds C3—C1 and C5—C4 [asymmetry parameter (Duax et al., 1976) ΔC2[C3–C1] = 7.5 (2)°] The pyrone ring (O2/C5/C6/C7/C12/C13) adopts an envelope conformation, with the C5 [displacement = 0.347 (1) Å] atom as the flap and with puckering parameters q2 = 0.3973 (2) Å and ϕ2 = 119.7 (2)°. The pyrazole ring is approximately planar, with a maximum deviation of 0.002 (2) Å for atom C2, and forms a dihedral angle of 13.2 (1)° with the attached benzene ring. The planar atoms of the pyran ring and the pyrazole ring are close to coplanar, the dihedral angles between their mean planes being 6.4 (1)°. Moreover, the planar atoms of the pyrone ring and the benzene ring of the chromene unit are also almost coplanar, the dihedral angle between their mean planes being 10.7 (1)°. The geometric parameters of the title molecule agree well with those reported for similar structures (Kanchanadevi et al., 2013a,b).

Supra­molecular features top

The molecular conformation is stabilized by an intra­molecular C19—H19···O1 hydrogen bond, which generates an S(6) ring motif. The crystal packing features C17—H17···O3 hydrogen bonds, which form a supra­molecular chain along the a axis. This chain is connected into double layer that stacks along the c axis (Table 1 and Fig 2; Cg is the centroid of the pyrazole N1/N2/C3/C1/C2 ring) by ππ inter­actions, with Cg···Cgii = 3.801 (1) Å [symmetry code: (ii) -x, -y, -z].

Database survey top

The title compound, (I), is closely related to 16-methyl-11-(2-methyl­phenyl)-14-phenyl-8,12-dioxa-14,15-di­aza­tetra­cyclo­[8.7.0.02,7.013,17]heptadeca-2(7),3,5,13 (17),15-penta­ene-10-carbo­nitrile, (II) (Kanchanadevi et al., 2013a), and methyl 11,14,16-tri­phenyl-8,12-dioxa-14,15-di­aza­tetra­cyclo­[8.7.0.02,7.013,17]heptadeca-2(7),3,5,13 (17),15-penta­ene-10-carboxyl­ate, (III) (Kanchanadevi et al., 2013b). The pyran and pyrone rings of (II) and (III) adopt half-chair conformations, while the pyran and pyrone rings of (I) adopt half-chair and envelope conformations, respectively. The pyrazole ring forms dihedral angles of 13.2 (1), 16.9 (1) and 15.1 (1)°, respectively, for (I), (II) and (III) with the attached benzene ring.

Synthesis and crystallization top

A mixture of (E)-methyl 2-[(2-formyl-6-meth­oxy­phen­oxy)­methyl]-3-(4-meth­oxy­phenyl)­acrylate (0.356g, 1mmol) and 3-methyl-1-phenyl-1H- pyrazol-5-one (0.174 g, 1 mmol) was placed in a round-bottomed flask and melted at 453 K for 1 h. After completion of the reaction as indicated by thin-layer chromatography, the crude product was washed with 5 ml of an ethyl acetate and hexane mixture (1:49 ratio), which successfully provided the title compound as a colourless solid in 93% yield. Colourless blocks were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were positioned geometrically, with C—H = 0.93–0.98 Å, and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Owing to poor agreement, the reflections 100, 011 and 100 were omitted from the final cycles of refinement.

Related literature top

For related literature, see: Ellis & Lockhart (2007); Horton et al. (2003); Kanchanadevi et al. (2013a, b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of stacking of supramolecular double layer along the c axis. The C—H···O and ππ interactions are shown as green and blue dotted lines, respectively.
Methyl 6-methoxy-11-(4-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15-diazatetracyclo[8.7.0.02,7.013,17]heptadeca-2(7),3,5,13 (17),15-pentaene-10-carboxylate top
Crystal data top
C30H28N2O6Z = 4
Mr = 512.54F(000) = 1080
Monoclinic, P21/cDx = 1.328 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.9549 (5) Åθ = 2.0–25.0°
b = 14.5280 (5) ŵ = 0.09 mm1
c = 13.8522 (4) ÅT = 293 K
β = 100.433 (2)°Block, colourless
V = 2564.00 (15) Å30.23 × 0.21 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4509 independent reflections
Radiation source: fine-focus sealed tube3508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1717
Tmin = 0.979, Tmax = 0.986l = 1616
23615 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.046P)2 + 0.5491P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4509 reflectionsΔρmax = 0.19 e Å3
348 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (7)
Crystal data top
C30H28N2O6V = 2564.00 (15) Å3
Mr = 512.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9549 (5) ŵ = 0.09 mm1
b = 14.5280 (5) ÅT = 293 K
c = 13.8522 (4) Å0.23 × 0.21 × 0.15 mm
β = 100.433 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3508 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.032
23615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
4509 reflectionsΔρmin = 0.14 e Å3
348 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09417 (11)0.03532 (10)0.11857 (10)0.0359 (3)
C20.04588 (12)0.04204 (10)0.15296 (11)0.0409 (4)
C30.01793 (11)0.10082 (10)0.10840 (10)0.0352 (3)
C40.11683 (11)0.20846 (10)0.03943 (10)0.0359 (3)
H40.10640.18240.02690.043*
C50.21498 (11)0.16198 (10)0.10138 (10)0.0355 (3)
C60.23039 (12)0.19093 (12)0.20849 (10)0.0444 (4)
H6A0.24170.25690.21260.053*
H6B0.16670.17770.23340.053*
C70.34317 (12)0.05975 (13)0.24446 (12)0.0482 (4)
C80.43098 (14)0.02194 (16)0.30561 (14)0.0637 (5)
C90.46352 (15)0.06504 (17)0.28691 (17)0.0747 (7)
H90.52010.09150.32860.090*
C100.41272 (16)0.11336 (15)0.20656 (18)0.0703 (6)
H100.43510.17240.19450.084*
C110.32897 (14)0.07494 (13)0.14395 (14)0.0564 (5)
H110.29710.10700.08840.068*
C120.29210 (12)0.01174 (11)0.16377 (11)0.0429 (4)
C130.20139 (11)0.05619 (10)0.09589 (10)0.0367 (3)
H130.20300.03630.02860.044*
C140.16950 (11)0.10535 (11)0.13707 (10)0.0388 (4)
C150.25161 (13)0.04791 (12)0.14825 (12)0.0492 (4)
H150.24150.01540.15320.059*
C160.34859 (14)0.08532 (15)0.15202 (14)0.0613 (5)
H160.40390.04680.15960.074*
C170.36458 (14)0.17851 (15)0.14481 (14)0.0636 (5)
H170.43020.20320.14750.076*
C180.28280 (14)0.23487 (14)0.13359 (14)0.0603 (5)
H180.29340.29810.12840.072*
C190.18506 (13)0.19915 (12)0.12997 (12)0.0489 (4)
H190.12990.23810.12280.059*
C200.12462 (11)0.31102 (10)0.03090 (10)0.0363 (3)
C210.16048 (13)0.34863 (11)0.04866 (11)0.0454 (4)
H210.17530.31000.09790.055*
C220.17462 (14)0.44161 (12)0.05640 (12)0.0505 (4)
H220.19920.46540.11030.061*
C230.15246 (12)0.50008 (11)0.01571 (11)0.0436 (4)
C240.11484 (13)0.46416 (11)0.09468 (12)0.0458 (4)
H240.09860.50300.14310.055*
C250.10136 (12)0.37067 (11)0.10157 (11)0.0435 (4)
H250.07600.34700.15510.052*
C260.31011 (12)0.19241 (11)0.05938 (11)0.0419 (4)
C280.39686 (15)0.18027 (16)0.07564 (14)0.0697 (6)
H28A0.40410.24600.07700.104*
H28B0.38480.15690.14150.104*
H28C0.46000.15370.03930.104*
C270.08955 (15)0.13469 (12)0.17983 (16)0.0657 (5)
H27A0.03550.17350.19670.099*
H27B0.14600.12980.23500.099*
H27C0.11540.16080.12520.099*
C290.15834 (18)0.65225 (13)0.07959 (15)0.0687 (6)
H29A0.08620.65270.08720.103*
H29B0.17890.71320.06400.103*
H29C0.20150.63210.13960.103*
C300.58200 (18)0.0550 (3)0.42712 (19)0.1291 (13)
H30A0.58190.00290.46050.194*
H30B0.60810.10220.47370.194*
H30C0.62620.05080.37870.194*
N20.06991 (9)0.06546 (9)0.13442 (9)0.0388 (3)
N10.05199 (10)0.02486 (9)0.16222 (10)0.0442 (3)
O10.02331 (8)0.18946 (7)0.08051 (8)0.0419 (3)
O20.31621 (9)0.14614 (9)0.26917 (8)0.0568 (3)
O30.37641 (9)0.24377 (9)0.09954 (9)0.0623 (4)
O40.30904 (9)0.15651 (8)0.02902 (8)0.0519 (3)
O50.17081 (10)0.59132 (8)0.00264 (9)0.0579 (3)
O60.47757 (11)0.07731 (12)0.38029 (11)0.0908 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (8)0.0412 (9)0.0338 (7)0.0008 (7)0.0065 (6)0.0011 (6)
C20.0384 (9)0.0407 (9)0.0441 (8)0.0019 (7)0.0090 (7)0.0006 (7)
C30.0326 (8)0.0390 (9)0.0345 (7)0.0017 (7)0.0072 (6)0.0009 (6)
C40.0298 (8)0.0440 (9)0.0349 (7)0.0010 (6)0.0087 (6)0.0002 (6)
C50.0298 (8)0.0435 (9)0.0339 (7)0.0001 (6)0.0074 (6)0.0016 (6)
C60.0386 (9)0.0556 (10)0.0378 (8)0.0009 (8)0.0040 (7)0.0033 (7)
C70.0355 (9)0.0652 (12)0.0450 (9)0.0047 (8)0.0103 (7)0.0132 (8)
C80.0382 (10)0.0949 (16)0.0569 (11)0.0044 (10)0.0059 (8)0.0275 (11)
C90.0403 (11)0.1043 (18)0.0820 (15)0.0206 (12)0.0174 (10)0.0461 (14)
C100.0525 (12)0.0711 (14)0.0967 (16)0.0269 (11)0.0385 (12)0.0353 (12)
C110.0465 (10)0.0587 (11)0.0705 (12)0.0118 (9)0.0279 (9)0.0124 (9)
C120.0323 (8)0.0523 (10)0.0468 (9)0.0063 (7)0.0145 (7)0.0092 (7)
C130.0329 (8)0.0442 (9)0.0345 (7)0.0032 (7)0.0102 (6)0.0006 (6)
C140.0319 (8)0.0507 (10)0.0342 (7)0.0010 (7)0.0075 (6)0.0035 (7)
C150.0392 (9)0.0542 (11)0.0570 (10)0.0073 (8)0.0163 (8)0.0061 (8)
C160.0361 (10)0.0796 (15)0.0716 (12)0.0112 (10)0.0185 (9)0.0101 (10)
C170.0320 (10)0.0828 (15)0.0763 (13)0.0066 (10)0.0108 (9)0.0153 (11)
C180.0422 (10)0.0596 (12)0.0786 (13)0.0098 (9)0.0101 (9)0.0066 (10)
C190.0355 (9)0.0514 (11)0.0607 (10)0.0003 (8)0.0115 (8)0.0033 (8)
C200.0307 (8)0.0423 (9)0.0359 (7)0.0002 (6)0.0058 (6)0.0013 (6)
C210.0558 (10)0.0470 (10)0.0364 (8)0.0018 (8)0.0160 (7)0.0006 (7)
C220.0605 (11)0.0504 (11)0.0452 (9)0.0001 (8)0.0217 (8)0.0077 (8)
C230.0398 (9)0.0404 (9)0.0498 (9)0.0000 (7)0.0058 (7)0.0023 (7)
C240.0473 (10)0.0459 (10)0.0460 (9)0.0046 (8)0.0134 (7)0.0042 (7)
C250.0441 (9)0.0491 (10)0.0408 (8)0.0017 (8)0.0170 (7)0.0026 (7)
C260.0327 (8)0.0483 (10)0.0448 (9)0.0024 (7)0.0074 (7)0.0038 (7)
C280.0544 (12)0.0998 (16)0.0629 (12)0.0039 (11)0.0324 (10)0.0098 (11)
C270.0535 (12)0.0471 (11)0.0994 (15)0.0047 (9)0.0215 (11)0.0151 (10)
C290.0829 (15)0.0448 (11)0.0787 (13)0.0057 (10)0.0151 (11)0.0064 (10)
C300.0450 (13)0.251 (4)0.0817 (17)0.0043 (18)0.0152 (12)0.036 (2)
N20.0327 (7)0.0406 (7)0.0451 (7)0.0006 (6)0.0118 (5)0.0023 (6)
N10.0400 (8)0.0414 (8)0.0528 (8)0.0010 (6)0.0124 (6)0.0047 (6)
O10.0306 (6)0.0416 (6)0.0558 (6)0.0013 (5)0.0141 (5)0.0074 (5)
O20.0526 (7)0.0713 (9)0.0406 (6)0.0068 (6)0.0070 (5)0.0016 (6)
O30.0405 (7)0.0801 (9)0.0660 (8)0.0186 (7)0.0087 (6)0.0069 (7)
O40.0471 (7)0.0659 (8)0.0486 (6)0.0057 (6)0.0246 (5)0.0032 (6)
O50.0696 (8)0.0412 (7)0.0641 (8)0.0025 (6)0.0155 (6)0.0025 (6)
O60.0571 (9)0.1361 (14)0.0674 (9)0.0008 (9)0.0204 (7)0.0192 (9)
Geometric parameters (Å, º) top
C1—C31.360 (2)C16—H160.9300
C1—C21.410 (2)C17—C181.370 (3)
C1—C131.509 (2)C17—H170.9300
C2—N11.3211 (19)C18—C191.378 (2)
C2—C271.481 (2)C18—H180.9300
C3—O11.3499 (17)C19—H190.9300
C3—N21.3555 (18)C20—C251.381 (2)
C4—O11.4553 (16)C20—C211.384 (2)
C4—C201.499 (2)C21—C221.370 (2)
C4—C51.554 (2)C21—H210.9300
C4—H40.9800C22—C231.380 (2)
C5—C61.5202 (19)C22—H220.9300
C5—C261.521 (2)C23—O51.3646 (19)
C5—C131.547 (2)C23—C241.378 (2)
C6—O21.4239 (19)C24—C251.375 (2)
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C25—H250.9300
C7—O21.363 (2)C26—O31.1962 (19)
C7—C121.380 (2)C26—O41.3288 (19)
C7—C81.402 (2)C28—O41.4480 (19)
C8—O61.362 (3)C28—H28A0.9600
C8—C91.372 (3)C28—H28B0.9600
C9—C101.378 (3)C28—H28C0.9600
C9—H90.9300C27—H27A0.9600
C10—C111.378 (3)C27—H27B0.9600
C10—H100.9300C27—H27C0.9600
C11—C121.392 (2)C29—O51.417 (2)
C11—H110.9300C29—H29A0.9600
C12—C131.511 (2)C29—H29B0.9600
C13—H130.9800C29—H29C0.9600
C14—C191.378 (2)C30—O61.428 (3)
C14—C151.383 (2)C30—H30A0.9600
C14—N21.4209 (19)C30—H30B0.9600
C15—C161.379 (2)C30—H30C0.9600
C15—H150.9300N2—N11.3753 (17)
C16—C171.370 (3)
C3—C1—C2103.54 (13)C16—C17—H17120.4
C3—C1—C13121.08 (13)C17—C18—C19120.92 (18)
C2—C1—C13135.36 (13)C17—C18—H18119.5
N1—C2—C1111.99 (13)C19—C18—H18119.5
N1—C2—C27118.48 (14)C18—C19—C14119.55 (16)
C1—C2—C27129.52 (15)C18—C19—H19120.2
O1—C3—N2121.81 (13)C14—C19—H19120.2
O1—C3—C1128.52 (13)C25—C20—C21117.70 (14)
N2—C3—C1109.64 (13)C25—C20—C4122.77 (13)
O1—C4—C20106.97 (11)C21—C20—C4119.48 (13)
O1—C4—C5110.95 (11)C22—C21—C20121.37 (15)
C20—C4—C5114.54 (12)C22—C21—H21119.3
O1—C4—H4108.1C20—C21—H21119.3
C20—C4—H4108.1C21—C22—C23120.12 (15)
C5—C4—H4108.1C21—C22—H22119.9
C6—C5—C26108.70 (12)C23—C22—H22119.9
C6—C5—C13108.45 (12)O5—C23—C24124.63 (15)
C26—C5—C13111.28 (12)O5—C23—C22115.95 (14)
C6—C5—C4111.63 (12)C24—C23—C22119.42 (15)
C26—C5—C4107.52 (11)C25—C24—C23119.78 (15)
C13—C5—C4109.27 (11)C25—C24—H24120.1
O2—C6—C5113.59 (13)C23—C24—H24120.1
O2—C6—H6A108.8C24—C25—C20121.60 (14)
C5—C6—H6A108.8C24—C25—H25119.2
O2—C6—H6B108.8C20—C25—H25119.2
C5—C6—H6B108.8O3—C26—O4124.07 (15)
H6A—C6—H6B107.7O3—C26—C5124.53 (14)
O2—C7—C12124.17 (14)O4—C26—C5111.38 (13)
O2—C7—C8115.21 (17)O4—C28—H28A109.5
C12—C7—C8120.59 (18)O4—C28—H28B109.5
O6—C8—C9125.34 (18)H28A—C28—H28B109.5
O6—C8—C7115.3 (2)O4—C28—H28C109.5
C9—C8—C7119.4 (2)H28A—C28—H28C109.5
C8—C9—C10120.24 (18)H28B—C28—H28C109.5
C8—C9—H9119.9C2—C27—H27A109.5
C10—C9—H9119.9C2—C27—H27B109.5
C9—C10—C11120.5 (2)H27A—C27—H27B109.5
C9—C10—H10119.7C2—C27—H27C109.5
C11—C10—H10119.7H27A—C27—H27C109.5
C10—C11—C12120.1 (2)H27B—C27—H27C109.5
C10—C11—H11120.0O5—C29—H29A109.5
C12—C11—H11120.0O5—C29—H29B109.5
C7—C12—C11119.06 (15)H29A—C29—H29B109.5
C7—C12—C13119.52 (15)O5—C29—H29C109.5
C11—C12—C13121.34 (15)H29A—C29—H29C109.5
C1—C13—C12115.22 (12)H29B—C29—H29C109.5
C1—C13—C5106.87 (11)O6—C30—H30A109.5
C12—C13—C5108.98 (12)O6—C30—H30B109.5
C1—C13—H13108.5H30A—C30—H30B109.5
C12—C13—H13108.5O6—C30—H30C109.5
C5—C13—H13108.5H30A—C30—H30C109.5
C19—C14—C15119.94 (15)H30B—C30—H30C109.5
C19—C14—N2121.54 (14)C3—N2—N1109.20 (12)
C15—C14—N2118.51 (15)C3—N2—C14131.47 (13)
C16—C15—C14119.42 (17)N1—N2—C14119.34 (12)
C16—C15—H15120.3C2—N1—N2105.62 (12)
C14—C15—H15120.3C3—O1—C4112.50 (11)
C17—C16—C15120.90 (17)C7—O2—C6118.73 (12)
C17—C16—H16119.6C26—O4—C28116.07 (14)
C15—C16—H16119.6C23—O5—C29117.42 (14)
C18—C17—C16119.27 (17)C8—O6—C30117.7 (2)
C18—C17—H17120.4
C3—C1—C2—N10.40 (17)C16—C17—C18—C190.3 (3)
C13—C1—C2—N1179.16 (15)C17—C18—C19—C140.4 (3)
C3—C1—C2—C27178.69 (17)C15—C14—C19—C180.3 (2)
C13—C1—C2—C270.1 (3)N2—C14—C19—C18179.53 (15)
C2—C1—C3—O1177.68 (14)O1—C4—C20—C2539.53 (18)
C13—C1—C3—O11.3 (2)C5—C4—C20—C2583.85 (17)
C2—C1—C3—N20.19 (16)O1—C4—C20—C21143.14 (14)
C13—C1—C3—N2179.17 (12)C5—C4—C20—C2193.47 (16)
O1—C4—C5—C655.68 (16)C25—C20—C21—C221.3 (2)
C20—C4—C5—C665.55 (16)C4—C20—C21—C22176.14 (15)
O1—C4—C5—C26174.82 (12)C20—C21—C22—C230.4 (3)
C20—C4—C5—C2653.59 (16)C21—C22—C23—O5178.81 (15)
O1—C4—C5—C1364.28 (14)C21—C22—C23—C240.8 (3)
C20—C4—C5—C13174.49 (11)O5—C23—C24—C25178.58 (15)
C26—C5—C6—O264.78 (17)C22—C23—C24—C251.0 (2)
C13—C5—C6—O256.34 (17)C23—C24—C25—C200.0 (2)
C4—C5—C6—O2176.78 (12)C21—C20—C25—C241.1 (2)
O2—C7—C8—O60.7 (2)C4—C20—C25—C24176.25 (14)
C12—C7—C8—O6177.18 (15)C6—C5—C26—O311.5 (2)
O2—C7—C8—C9179.50 (16)C13—C5—C26—O3130.89 (16)
C12—C7—C8—C92.6 (3)C4—C5—C26—O3109.48 (17)
O6—C8—C9—C10177.29 (18)C6—C5—C26—O4170.07 (13)
C7—C8—C9—C102.4 (3)C13—C5—C26—O450.69 (16)
C8—C9—C10—C110.2 (3)C4—C5—C26—O468.94 (16)
C9—C10—C11—C122.7 (3)O1—C3—N2—N1178.09 (12)
O2—C7—C12—C11177.79 (14)C1—C3—N2—N10.06 (16)
C8—C7—C12—C110.1 (2)O1—C3—N2—C141.7 (2)
O2—C7—C12—C131.1 (2)C1—C3—N2—C14179.75 (13)
C8—C7—C12—C13176.62 (14)C19—C14—N2—C313.5 (2)
C10—C11—C12—C72.6 (2)C15—C14—N2—C3167.34 (15)
C10—C11—C12—C13179.21 (15)C19—C14—N2—N1166.34 (14)
C3—C1—C13—C12142.17 (14)C15—C14—N2—N112.87 (19)
C2—C1—C13—C1236.4 (2)C1—C2—N1—N20.43 (16)
C3—C1—C13—C520.94 (18)C27—C2—N1—N2178.76 (15)
C2—C1—C13—C5157.65 (16)C3—N2—N1—C20.30 (15)
C7—C12—C13—C193.43 (17)C14—N2—N1—C2179.54 (12)
C11—C12—C13—C189.95 (17)N2—C3—O1—C4169.78 (12)
C7—C12—C13—C526.64 (18)C1—C3—O1—C412.6 (2)
C11—C12—C13—C5149.98 (14)C20—C4—O1—C3168.68 (11)
C6—C5—C13—C172.28 (14)C5—C4—O1—C343.10 (15)
C26—C5—C13—C1168.19 (11)C12—C7—O2—C60.3 (2)
C4—C5—C13—C149.61 (14)C8—C7—O2—C6177.55 (14)
C6—C5—C13—C1252.83 (15)C5—C6—O2—C729.7 (2)
C26—C5—C13—C1266.70 (15)O3—C26—O4—C282.2 (2)
C4—C5—C13—C12174.72 (11)C5—C26—O4—C28179.39 (14)
C19—C14—C15—C160.1 (2)C24—C23—O5—C295.4 (2)
N2—C14—C15—C16179.32 (14)C22—C23—O5—C29174.23 (16)
C14—C15—C16—C170.0 (3)C9—C8—O6—C3017.2 (3)
C15—C16—C17—C180.1 (3)C7—C8—O6—C30162.52 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C3/C1/C2 pyrazole ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O10.932.282.907 (2)124
C17—H17···O3i0.932.543.433 (2)161
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C3/C1/C2 pyrazole ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O10.932.282.907 (2)124
C17—H17···O3i0.932.543.433 (2)161
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H28N2O6
Mr512.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.9549 (5), 14.5280 (5), 13.8522 (4)
β (°) 100.433 (2)
V3)2564.00 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
23615, 4509, 3508
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.02
No. of reflections4509
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationEllis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1–1196. London: Wiley-VCH.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorton, D. A., Boume, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Kannan, D., Bakthadoss, M. & Manivannan, V. (2013a). Acta Cryst. E69, o1746.  CSD CrossRef IUCr Journals Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Kannan, D., Gunasekaran, B., Manivannan, V. & Bakthadoss, N. (2013b). Acta Cryst. E69, o1035.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds