organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o951-o952

Crystal structure of N-(3-benzoyl-4,5,6,7-tetra­hydro-1-benzo­thio­phen-2-yl)benzamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore-570 006, India
*Correspondence e-mail: jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 July 2014; accepted 23 July 2014; online 1 August 2014)

In the title compound, C22H19NO2S, the cyclo­hexene ring adopts a half-chair conformation. The dihedral angles between the plane of the thio­phene ring and those of its amide- and carbonyl-bonded benzene rings are 7.1 (1) and 59.0 (2)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, very weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.9009 (10) Å] are observed.

1. Related literature

For applications of 2-amino­thio­phene derivatives, see: Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]); Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209-246.]); Cannito et al. (1990[Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem., 25, 635-639.]); Nikolakopoulos et al. (2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]); Lütjens et al. (2005[Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870-1877.]). For a related structure, see: Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H19NO2S

  • Mr = 361.44

  • Monoclinic, P 21 /c

  • a = 13.5223 (4) Å

  • b = 6.23222 (15) Å

  • c = 22.2941 (6) Å

  • β = 106.150 (3)°

  • V = 1804.66 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.72 mm−1

  • T = 173 K

  • 0.24 × 0.22 × 0.12 mm

2.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.698, Tmax = 1.000

  • 11346 measured reflections

  • 3467 independent reflections

  • 3049 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.04

  • 3467 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.01 2.6564 (16) 131

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

2-Amino­thio­phene derivatives have been used in a number of applications in pesticides, dyes andpharmaceuticals. Reviews on the synthesis and properties of these compounds have been reported (Sabnis et al., 1999; Puterová et al., 2010). Substituted 2-amino­thio­phenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito et al.,1990; Nikolakopoulos et al., 2006; Lütjens et al., 2005). The crystal and molecular structures of two 2-amino­thiphenes have been previously reported by our group (Kubicki et al., 2012). In continuation of our work on derivatives of 2-amino­thio­phenes, we report herin the crystal structure of the title compound, (I).

In (I), the cyclo­hexene ring adopts an envelope conformation (puckering parameters Q, θ, and ϕ = 0.5098 (19)Å, 126.7 (2)° and 322.2 (2)°, respectively) (Fig. 1). The dihedral angles between the mean planes of the thio­phene ring and phenyl rings are 7.1 (1)° and 59.0 (2)°. The phenyl rings are twisted with respect to each other by 54.1 (1)°. A short N1—H1···O1 intra­molecular hydrogen bond is observed. In addition, weak Cg–Cg ππ inter­molecular inter­actions are present (Cg1–Cg3 : 3.9009 (10)Å; x,1+y,z; Cg1: S1/C8/C3/C2/C9 and Cg3: C11–C16)(Fig 2).

Synthesis and crystallization top

To a solution of benzoic acid (200 mg, 1.64 mmol) in di­chloro­methane (10 ml) was added 1-(3-di­methyl­amino­propyl)-3-ethyl­carbodimidide (377.26 mg, 1.968 mmol), tri­ethyl­amine (0.7 ml, 4.92 mmol) and stirred for 20 mins over a magnetic stirrer at room temperature. A solution of (2-Amino-4,5,6,7-tetra­hydro-benzo[b]thio­phen-3-yl)- phenyl-methanone (200 mg, 1.64 mmol) in 5 ml of di­chloro­methane was added to the above reaction mixture and continued stirring overnight at room temperature. The reaction completion was confirmed by thin layer chromatography. The reaction mixture was quenched with water and extracted with di­chloro­methane. The organic layers were separated, dried over anhydrous sodium sulphate and concentrated. The crude product was purified using silica gel column chromatography (60:120 mesh) using 20% ethyl­acetate in hexane. The column fractions for the title compound were left to evaporate in open air affording yellow blocks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Related literature top

For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006); Lütjens et al. (2005). For a related structure, see: Kubicki et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of C22H19NO2S showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for C22H19NO2S viewed along the b axis. Dashed lines indicate N—H···O intramolecular hydrogen bonds. H atoms not involved in hydrogen bonding have been removed for clarity.
N-(3-Benzoyl-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)benzamide top
Crystal data top
C22H19NO2SF(000) = 760
Mr = 361.44Dx = 1.330 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.5223 (4) ÅCell parameters from 5029 reflections
b = 6.23222 (15) Åθ = 4.1–71.5°
c = 22.2941 (6) ŵ = 1.72 mm1
β = 106.150 (3)°T = 173 K
V = 1804.66 (9) Å3Rod, yellow
Z = 40.24 × 0.22 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
3467 independent reflections
Radiation source: Enhance (Cu) X-ray Source3049 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.031
ω scansθmax = 71.2°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1616
Tmin = 0.698, Tmax = 1.000k = 77
11346 measured reflectionsl = 1826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.3587P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3467 reflectionsΔρmax = 0.28 e Å3
235 parametersΔρmin = 0.24 e Å3
0 restraints
Crystal data top
C22H19NO2SV = 1804.66 (9) Å3
Mr = 361.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.5223 (4) ŵ = 1.72 mm1
b = 6.23222 (15) ÅT = 173 K
c = 22.2941 (6) Å0.24 × 0.22 × 0.12 mm
β = 106.150 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
3049 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 1.000Rint = 0.031
11346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3467 reflectionsΔρmin = 0.24 e Å3
235 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δ 12.60 (s, 1H), 8.04-8.02 (m, 2H), 7.57-7.54 (m, 3H), 7.52-7.42 (m, 5H), 2.72-2.69 (m, 2H), 1.96-1.93 (m, 2H), 1.79-1.76 (m, 2H), 1.54-1.51 (m, 2H). MS: m/z = 361.11 (Calculated), m/z = 361.977 [M]+ (found).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69329 (3)0.62586 (6)0.30922 (2)0.02882 (13)
O10.75720 (10)0.27477 (18)0.49345 (5)0.0410 (3)
O20.81305 (10)0.2921 (2)0.28522 (5)0.0435 (3)
N10.79387 (10)0.2983 (2)0.38260 (6)0.0292 (3)
H10.80880.23300.41800.035*
C10.73063 (11)0.4651 (2)0.48717 (7)0.0283 (3)
C20.69969 (11)0.5657 (2)0.42510 (6)0.0256 (3)
C30.63392 (11)0.7496 (2)0.40467 (6)0.0259 (3)
C40.56991 (12)0.8644 (3)0.44032 (7)0.0318 (3)
H4A0.61250.96710.46880.038*
H4B0.54380.76140.46480.038*
C50.47979 (12)0.9811 (3)0.39537 (8)0.0363 (4)
H5A0.42990.87680.37290.044*
H5B0.44621.07250.41900.044*
C60.51630 (13)1.1166 (3)0.34902 (8)0.0350 (4)
H6A0.56871.21610.37150.042*
H6B0.45901.19950.32380.042*
C70.56026 (12)0.9761 (3)0.30670 (7)0.0340 (3)
H7A0.50440.91440.27410.041*
H7B0.60201.06290.28700.041*
C80.62504 (11)0.7993 (2)0.34390 (7)0.0280 (3)
C90.73396 (11)0.4801 (2)0.37706 (6)0.0263 (3)
C100.83182 (12)0.2120 (2)0.33703 (7)0.0311 (3)
C110.89548 (11)0.0141 (2)0.35530 (7)0.0309 (3)
C120.92489 (13)0.0932 (3)0.30829 (9)0.0428 (4)
H120.90740.03740.26800.051*
C130.97989 (15)0.2821 (4)0.32123 (11)0.0562 (6)
H130.99890.35310.28950.067*
C141.00688 (14)0.3666 (3)0.38033 (12)0.0549 (6)
H141.04360.49450.38860.066*
C150.97916 (15)0.2603 (3)0.42765 (10)0.0485 (4)
H150.99780.31620.46790.058*
C160.92373 (14)0.0708 (3)0.41529 (8)0.0391 (4)
H160.90530.00000.44730.047*
C170.73787 (11)0.5924 (2)0.54473 (6)0.0259 (3)
C180.77860 (11)0.7983 (2)0.55156 (7)0.0278 (3)
H180.79220.86680.51770.033*
C190.79904 (12)0.9025 (3)0.60861 (7)0.0332 (3)
H190.82781.03920.61310.040*
C200.77683 (13)0.8037 (3)0.65883 (7)0.0375 (4)
H200.79000.87420.69700.045*
C210.73484 (13)0.5988 (3)0.65215 (7)0.0382 (4)
H210.71910.53310.68580.046*
C220.71632 (12)0.4922 (3)0.59591 (7)0.0314 (3)
H220.68950.35390.59200.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0315 (2)0.0324 (2)0.02130 (19)0.00008 (14)0.00527 (14)0.00048 (13)
O10.0672 (8)0.0240 (6)0.0324 (6)0.0068 (5)0.0152 (5)0.0042 (4)
O20.0592 (8)0.0429 (7)0.0301 (6)0.0045 (6)0.0152 (5)0.0012 (5)
N10.0356 (7)0.0257 (6)0.0265 (6)0.0014 (5)0.0089 (5)0.0002 (5)
C10.0317 (7)0.0247 (7)0.0280 (7)0.0012 (6)0.0077 (6)0.0019 (6)
C20.0284 (7)0.0245 (7)0.0228 (7)0.0036 (6)0.0052 (5)0.0009 (5)
C30.0260 (7)0.0253 (7)0.0245 (7)0.0029 (5)0.0036 (5)0.0004 (5)
C40.0330 (8)0.0344 (8)0.0276 (7)0.0039 (6)0.0082 (6)0.0026 (6)
C50.0309 (8)0.0421 (9)0.0360 (8)0.0062 (7)0.0096 (6)0.0036 (7)
C60.0343 (8)0.0331 (8)0.0339 (8)0.0037 (6)0.0032 (6)0.0040 (6)
C70.0349 (8)0.0372 (9)0.0263 (7)0.0035 (7)0.0026 (6)0.0058 (6)
C80.0263 (7)0.0303 (8)0.0254 (7)0.0011 (6)0.0037 (6)0.0007 (6)
C90.0279 (7)0.0244 (7)0.0246 (7)0.0042 (6)0.0040 (5)0.0003 (5)
C100.0333 (8)0.0295 (8)0.0305 (8)0.0066 (6)0.0088 (6)0.0060 (6)
C110.0268 (7)0.0290 (8)0.0378 (8)0.0064 (6)0.0104 (6)0.0081 (6)
C120.0352 (8)0.0493 (10)0.0452 (10)0.0036 (8)0.0133 (7)0.0162 (8)
C130.0374 (10)0.0572 (12)0.0735 (14)0.0054 (9)0.0147 (9)0.0305 (11)
C140.0314 (9)0.0367 (10)0.0914 (16)0.0037 (7)0.0083 (10)0.0153 (10)
C150.0422 (10)0.0364 (9)0.0638 (12)0.0037 (8)0.0097 (9)0.0046 (8)
C160.0431 (9)0.0315 (8)0.0439 (9)0.0023 (7)0.0141 (7)0.0011 (7)
C170.0257 (7)0.0267 (7)0.0238 (7)0.0040 (6)0.0046 (5)0.0030 (5)
C180.0303 (7)0.0265 (7)0.0259 (7)0.0025 (6)0.0069 (6)0.0055 (5)
C190.0329 (8)0.0290 (8)0.0330 (8)0.0030 (6)0.0012 (6)0.0018 (6)
C200.0409 (9)0.0442 (9)0.0240 (7)0.0097 (7)0.0033 (6)0.0038 (6)
C210.0432 (9)0.0471 (10)0.0265 (8)0.0068 (7)0.0134 (7)0.0094 (7)
C220.0342 (8)0.0303 (8)0.0309 (8)0.0017 (6)0.0109 (6)0.0070 (6)
Geometric parameters (Å, º) top
S1—C81.7363 (15)C7—C81.505 (2)
S1—C91.7183 (14)C10—C111.494 (2)
O1—C11.2359 (19)C11—C121.391 (2)
O2—C101.219 (2)C11—C161.389 (2)
N1—H10.8600C12—H120.9300
N1—C91.3783 (19)C12—C131.380 (3)
N1—C101.369 (2)C13—H130.9300
C1—C21.4701 (19)C13—C141.371 (3)
C1—C171.488 (2)C14—H140.9300
C2—C31.444 (2)C14—C151.383 (3)
C2—C91.387 (2)C15—H150.9300
C3—C41.508 (2)C15—C161.385 (2)
C3—C81.362 (2)C16—H160.9300
C4—H4A0.9700C17—C181.388 (2)
C4—H4B0.9700C17—C221.401 (2)
C4—C51.529 (2)C18—H180.9300
C5—H5A0.9700C18—C191.386 (2)
C5—H5B0.9700C19—H190.9300
C5—C61.519 (2)C19—C201.382 (2)
C6—H6A0.9700C20—H200.9300
C6—H6B0.9700C20—C211.388 (3)
C6—C71.524 (2)C21—H210.9300
C7—H7A0.9700C21—C221.379 (2)
C7—H7B0.9700C22—H220.9300
C9—S1—C890.96 (7)N1—C9—C2124.16 (13)
C9—N1—H1117.0C2—C9—S1112.49 (11)
C10—N1—H1117.0O2—C10—N1121.34 (15)
C10—N1—C9126.06 (13)O2—C10—C11123.29 (14)
O1—C1—C2120.92 (13)N1—C10—C11115.36 (13)
O1—C1—C17117.80 (13)C12—C11—C10117.07 (15)
C2—C1—C17121.15 (13)C16—C11—C10124.05 (14)
C3—C2—C1128.64 (13)C16—C11—C12118.84 (16)
C9—C2—C1119.60 (13)C11—C12—H12119.9
C9—C2—C3111.75 (12)C13—C12—C11120.20 (19)
C2—C3—C4127.10 (12)C13—C12—H12119.9
C8—C3—C2111.73 (13)C12—C13—H13119.6
C8—C3—C4120.77 (13)C14—C13—C12120.84 (18)
C3—C4—H4A109.6C14—C13—H13119.6
C3—C4—H4B109.6C13—C14—H14120.2
C3—C4—C5110.47 (12)C13—C14—C15119.55 (18)
H4A—C4—H4B108.1C15—C14—H14120.2
C5—C4—H4A109.6C14—C15—H15119.9
C5—C4—H4B109.6C14—C15—C16120.2 (2)
C4—C5—H5A109.4C16—C15—H15119.9
C4—C5—H5B109.4C11—C16—H16119.8
H5A—C5—H5B108.0C15—C16—C11120.34 (17)
C6—C5—C4111.07 (13)C15—C16—H16119.8
C6—C5—H5A109.4C18—C17—C1121.09 (13)
C6—C5—H5B109.4C18—C17—C22119.26 (13)
C5—C6—H6A109.4C22—C17—C1119.09 (13)
C5—C6—H6B109.4C17—C18—H18119.8
C5—C6—C7111.01 (13)C19—C18—C17120.38 (14)
H6A—C6—H6B108.0C19—C18—H18119.8
C7—C6—H6A109.4C18—C19—H19119.9
C7—C6—H6B109.4C20—C19—C18120.12 (15)
C6—C7—H7A109.6C20—C19—H19119.9
C6—C7—H7B109.6C19—C20—H20120.1
H7A—C7—H7B108.1C19—C20—C21119.85 (15)
C8—C7—C6110.29 (12)C21—C20—H20120.1
C8—C7—H7A109.6C20—C21—H21119.8
C8—C7—H7B109.6C22—C21—C20120.39 (15)
C3—C8—S1113.01 (11)C22—C21—H21119.8
C3—C8—C7126.25 (14)C17—C22—H22120.0
C7—C8—S1120.68 (11)C21—C22—C17119.98 (15)
N1—C9—S1123.35 (11)C21—C22—H22120.0
O1—C1—C2—C3155.63 (15)C8—S1—C9—N1177.76 (13)
O1—C1—C2—C923.4 (2)C8—S1—C9—C22.17 (12)
O1—C1—C17—C18135.47 (15)C8—C3—C4—C516.3 (2)
O1—C1—C17—C2235.8 (2)C9—S1—C8—C30.70 (12)
O2—C10—C11—C126.8 (2)C9—S1—C8—C7176.53 (13)
O2—C10—C11—C16175.24 (16)C9—N1—C10—O21.2 (2)
N1—C10—C11—C12172.35 (14)C9—N1—C10—C11179.62 (13)
N1—C10—C11—C165.6 (2)C9—C2—C3—C4170.22 (14)
C1—C2—C3—C48.8 (2)C9—C2—C3—C82.51 (18)
C1—C2—C3—C8178.44 (14)C10—N1—C9—S12.1 (2)
C1—C2—C9—S1177.81 (10)C10—N1—C9—C2177.95 (14)
C1—C2—C9—N12.3 (2)C10—C11—C12—C13177.16 (16)
C1—C17—C18—C19170.37 (14)C10—C11—C16—C15177.18 (16)
C1—C17—C22—C21171.94 (14)C11—C12—C13—C140.3 (3)
C2—C1—C17—C1840.4 (2)C12—C11—C16—C150.7 (3)
C2—C1—C17—C22148.30 (14)C12—C13—C14—C150.4 (3)
C2—C3—C4—C5155.81 (14)C13—C14—C15—C160.6 (3)
C2—C3—C8—S10.89 (16)C14—C15—C16—C110.0 (3)
C2—C3—C8—C7177.93 (14)C16—C11—C12—C130.9 (3)
C3—C2—C9—S13.05 (16)C17—C1—C2—C328.6 (2)
C3—C2—C9—N1176.88 (13)C17—C1—C2—C9152.41 (14)
C3—C4—C5—C649.88 (18)C17—C18—C19—C201.4 (2)
C4—C3—C8—S1172.37 (11)C18—C17—C22—C210.5 (2)
C4—C3—C8—C74.7 (2)C18—C19—C20—C210.6 (2)
C4—C5—C6—C764.62 (18)C19—C20—C21—C220.8 (3)
C5—C6—C7—C841.43 (18)C20—C21—C22—C171.4 (2)
C6—C7—C8—S1175.02 (11)C22—C17—C18—C190.9 (2)
C6—C7—C8—C38.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.012.6564 (16)131
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.012.6564 (16)131
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem., 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058–1066.  CSD CrossRef CAS Google Scholar
First citationLütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870–1877.  Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, (i), 209–246.  Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o951-o952
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds