organic compounds
of ethyl 2-chloro-6-methylquinoline-3-carboxylate
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C13H12ClNO2, the dihedral angle between the planes of the quinoline ring system (r.m.s. deviation = 0.029 Å) and the ester group is 54.97 (6)°. The C—O—C—Cm (m = methyl) torsion angle is −140.62 (16)°. In the crystal, molecules interact via aromatic π–π stacking [shortest centroid–centroid separation = 3.6774 (9) Å] generating (010) sheets.
Keywords: crystal structure; 2-chloro-3-formylquinoline; ethyl ester; π–π stacking.
CCDC reference: 1015360
1. Related literature
For background to 2-chloro-3-formylquinolines, see: Michael (2004); Abdel-Wahab et al. (2012). For our previous work in this area, see: Benzerka et al. (2012, 2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1015360
10.1107/S1600536814016900/hb7259sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016900/hb7259Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016900/hb7259Isup3.cml
Into a solution of NaCN (3 mmol) in absolute ethanol (15 ml), was added, in portion and at 0 °C,a mixture of 1 mmol of 2-chloro-3-formyl-6-methylquinoline and activated manganese dioxide (6.7 mmol). The reaction mixture was stirred for 3 h at rt. Purification of the corresponding compound was carried out by diluting the reaction mixture with CH2Cl2 and filtering through a small column packed with 4 cm of celite and 3 cm of silica gel. The pure compound was recovered after evaporation of solvents. Colourless blocks of (I) were obtained by dissolving the pure compound in EtOH and allowing the solution to slowly evaporate at room temperature.
All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) =1.5 or 1.2(carrier atom).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. A diagram of the layered crystal packing of (I) viewed down the a axis. |
C13H12ClNO2 | Z = 2 |
Mr = 249.69 | F(000) = 260 |
Triclinic, P1 | Dx = 1.424 Mg m−3 |
a = 6.0391 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.2986 (6) Å | Cell parameters from 2875 reflections |
c = 13.4323 (12) Å | θ = 2.8–25.0° |
α = 98.238 (6)° | µ = 0.32 mm−1 |
β = 90.123 (5)° | T = 150 K |
γ = 96.429 (6)° | BLOCK, colourless |
V = 582.16 (9) Å3 | 0.18 × 0.14 × 0.12 mm |
Bruker APEXII diffractometer | 1872 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
CCD rotation images, thin slices scans | θmax = 25.1°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −7→7 |
Tmin = 0.690, Tmax = 0.747 | k = −8→8 |
5190 measured reflections | l = −16→15 |
2061 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2333P] where P = (Fo2 + 2Fc2)/3 |
2061 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C13H12ClNO2 | γ = 96.429 (6)° |
Mr = 249.69 | V = 582.16 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.0391 (5) Å | Mo Kα radiation |
b = 7.2986 (6) Å | µ = 0.32 mm−1 |
c = 13.4323 (12) Å | T = 150 K |
α = 98.238 (6)° | 0.18 × 0.14 × 0.12 mm |
β = 90.123 (5)° |
Bruker APEXII diffractometer | 2061 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1872 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.747 | Rint = 0.016 |
5190 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
2061 reflections | Δρmin = −0.20 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C10 | 0.6109 (2) | 0.4100 (2) | 0.31856 (11) | 0.0233 (3) | |
C11 | 0.7716 (3) | 0.2270 (2) | −0.23686 (11) | 0.0281 (4) | |
H11A | 0.7218 | 0.3141 | −0.2768 | 0.042* | |
H11B | 0.7582 | 0.105 | −0.2757 | 0.042* | |
H11C | 0.9246 | 0.2644 | −0.2169 | 0.042* | |
C12 | 0.7931 (3) | 0.6667 (2) | 0.42998 (12) | 0.0356 (4) | |
H12A | 0.9531 | 0.6636 | 0.4327 | 0.043* | |
H12B | 0.7258 | 0.5967 | 0.4805 | 0.043* | |
C13 | 0.7400 (4) | 0.8609 (3) | 0.44891 (14) | 0.0491 (5) | |
H13A | 0.8105 | 0.9297 | 0.3995 | 0.074* | |
H13B | 0.7934 | 0.9171 | 0.5149 | 0.074* | |
H13C | 0.5815 | 0.8625 | 0.4447 | 0.074* | |
O1 | 0.70435 (19) | 0.58589 (15) | 0.33028 (8) | 0.0290 (3) | |
O2 | 0.6007 (2) | 0.31046 (17) | 0.38231 (9) | 0.0374 (3) | |
C1 | 0.3008 (2) | 0.27029 (19) | 0.19204 (11) | 0.0204 (3) | |
C2 | 0.5237 (2) | 0.35132 (19) | 0.21333 (11) | 0.0203 (3) | |
C3 | 0.6587 (2) | 0.36577 (19) | 0.13282 (11) | 0.0209 (3) | |
H3 | 0.804 | 0.4231 | 0.1429 | 0.025* | |
C4 | 0.5801 (2) | 0.29487 (19) | 0.03486 (11) | 0.0193 (3) | |
C5 | 0.7131 (2) | 0.29932 (19) | −0.05125 (11) | 0.0216 (3) | |
H5 | 0.8595 | 0.3552 | −0.0441 | 0.026* | |
C6 | 0.6313 (2) | 0.22322 (19) | −0.14494 (11) | 0.0217 (3) | |
C7 | 0.4081 (3) | 0.1369 (2) | −0.15399 (11) | 0.0242 (3) | |
H7 | 0.3517 | 0.083 | −0.2172 | 0.029* | |
C8 | 0.2740 (2) | 0.1305 (2) | −0.07286 (11) | 0.0231 (3) | |
H8 | 0.1283 | 0.0733 | −0.0812 | 0.028* | |
C9 | 0.3560 (2) | 0.21049 (19) | 0.02358 (11) | 0.0198 (3) | |
Cl1 | 0.11327 (6) | 0.26599 (5) | 0.29105 (3) | 0.02749 (13) | |
N1 | 0.2174 (2) | 0.20436 (16) | 0.10369 (9) | 0.0218 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C10 | 0.0187 (7) | 0.0291 (8) | 0.0229 (8) | 0.0065 (6) | 0.0032 (6) | 0.0034 (6) |
C11 | 0.0327 (9) | 0.0288 (8) | 0.0235 (8) | 0.0071 (7) | 0.0035 (7) | 0.0039 (6) |
C12 | 0.0407 (10) | 0.0442 (10) | 0.0191 (8) | 0.0002 (8) | −0.0072 (7) | −0.0014 (7) |
C13 | 0.0723 (14) | 0.0412 (11) | 0.0298 (10) | 0.0039 (10) | −0.0100 (9) | −0.0065 (8) |
O1 | 0.0382 (6) | 0.0265 (6) | 0.0204 (5) | −0.0006 (5) | −0.0049 (5) | 0.0009 (4) |
O2 | 0.0440 (7) | 0.0414 (7) | 0.0278 (6) | −0.0020 (5) | −0.0028 (5) | 0.0144 (5) |
C1 | 0.0213 (7) | 0.0180 (7) | 0.0237 (8) | 0.0053 (6) | 0.0043 (6) | 0.0061 (6) |
C2 | 0.0212 (7) | 0.0177 (7) | 0.0231 (7) | 0.0056 (6) | 0.0015 (6) | 0.0040 (6) |
C3 | 0.0185 (7) | 0.0188 (7) | 0.0253 (8) | 0.0014 (6) | −0.0005 (6) | 0.0034 (6) |
C4 | 0.0202 (7) | 0.0144 (7) | 0.0240 (7) | 0.0040 (5) | 0.0008 (6) | 0.0039 (6) |
C5 | 0.0190 (7) | 0.0195 (7) | 0.0270 (8) | 0.0029 (6) | 0.0014 (6) | 0.0052 (6) |
C6 | 0.0266 (8) | 0.0169 (7) | 0.0235 (7) | 0.0070 (6) | 0.0022 (6) | 0.0058 (6) |
C7 | 0.0306 (8) | 0.0202 (7) | 0.0218 (8) | 0.0044 (6) | −0.0045 (6) | 0.0023 (6) |
C8 | 0.0217 (7) | 0.0193 (7) | 0.0279 (8) | 0.0002 (6) | −0.0031 (6) | 0.0043 (6) |
C9 | 0.0209 (7) | 0.0155 (7) | 0.0241 (7) | 0.0043 (5) | 0.0005 (6) | 0.0053 (6) |
Cl1 | 0.0230 (2) | 0.0336 (2) | 0.0276 (2) | 0.00604 (15) | 0.00824 (15) | 0.00777 (16) |
N1 | 0.0200 (6) | 0.0194 (6) | 0.0267 (7) | 0.0027 (5) | 0.0020 (5) | 0.0052 (5) |
C10—O2 | 1.1971 (18) | C1—C2 | 1.419 (2) |
C10—O1 | 1.3308 (18) | C1—Cl1 | 1.7501 (14) |
C10—C2 | 1.494 (2) | C2—C3 | 1.365 (2) |
C11—C6 | 1.501 (2) | C3—C4 | 1.404 (2) |
C11—H11A | 0.96 | C3—H3 | 0.93 |
C11—H11B | 0.96 | C4—C5 | 1.411 (2) |
C11—H11C | 0.96 | C4—C9 | 1.421 (2) |
C12—O1 | 1.4588 (19) | C5—C6 | 1.368 (2) |
C12—C13 | 1.475 (3) | C5—H5 | 0.93 |
C12—H12A | 0.97 | C6—C7 | 1.420 (2) |
C12—H12B | 0.97 | C7—C8 | 1.362 (2) |
C13—H13A | 0.96 | C7—H7 | 0.93 |
C13—H13B | 0.96 | C8—C9 | 1.407 (2) |
C13—H13C | 0.96 | C8—H8 | 0.93 |
C1—N1 | 1.2935 (19) | C9—N1 | 1.3673 (19) |
O2—C10—O1 | 125.26 (14) | C3—C2—C1 | 116.71 (13) |
O2—C10—C2 | 124.26 (14) | C3—C2—C10 | 121.18 (13) |
O1—C10—C2 | 110.47 (12) | C1—C2—C10 | 122.05 (13) |
C6—C11—H11A | 109.5 | C2—C3—C4 | 120.61 (13) |
C6—C11—H11B | 109.5 | C2—C3—H3 | 119.7 |
H11A—C11—H11B | 109.5 | C4—C3—H3 | 119.7 |
C6—C11—H11C | 109.5 | C3—C4—C5 | 123.51 (13) |
H11A—C11—H11C | 109.5 | C3—C4—C9 | 117.37 (13) |
H11B—C11—H11C | 109.5 | C5—C4—C9 | 119.10 (13) |
O1—C12—C13 | 107.55 (14) | C6—C5—C4 | 121.45 (13) |
O1—C12—H12A | 110.2 | C6—C5—H5 | 119.3 |
C13—C12—H12A | 110.2 | C4—C5—H5 | 119.3 |
O1—C12—H12B | 110.2 | C5—C6—C7 | 118.37 (13) |
C13—C12—H12B | 110.2 | C5—C6—C11 | 121.79 (13) |
H12A—C12—H12B | 108.5 | C7—C6—C11 | 119.84 (13) |
C12—C13—H13A | 109.5 | C8—C7—C6 | 121.99 (14) |
C12—C13—H13B | 109.5 | C8—C7—H7 | 119 |
H13A—C13—H13B | 109.5 | C6—C7—H7 | 119 |
C12—C13—H13C | 109.5 | C7—C8—C9 | 119.98 (14) |
H13A—C13—H13C | 109.5 | C7—C8—H8 | 120 |
H13B—C13—H13C | 109.5 | C9—C8—H8 | 120 |
C10—O1—C12 | 117.45 (12) | N1—C9—C8 | 118.90 (13) |
N1—C1—C2 | 125.71 (13) | N1—C9—C4 | 122.00 (13) |
N1—C1—Cl1 | 115.40 (11) | C8—C9—C4 | 119.10 (13) |
C2—C1—Cl1 | 118.82 (11) | C1—N1—C9 | 117.48 (12) |
O2—C10—O1—C12 | −2.8 (2) | C9—C4—C5—C6 | −0.4 (2) |
C2—C10—O1—C12 | 178.41 (12) | C4—C5—C6—C7 | −0.6 (2) |
C13—C12—O1—C10 | −140.62 (16) | C4—C5—C6—C11 | −179.88 (13) |
N1—C1—C2—C3 | 2.2 (2) | C5—C6—C7—C8 | 1.0 (2) |
Cl1—C1—C2—C3 | −174.62 (10) | C11—C6—C7—C8 | −179.76 (13) |
N1—C1—C2—C10 | −174.93 (13) | C6—C7—C8—C9 | −0.2 (2) |
Cl1—C1—C2—C10 | 8.23 (18) | C7—C8—C9—N1 | 179.20 (12) |
O2—C10—C2—C3 | −123.43 (17) | C7—C8—C9—C4 | −0.9 (2) |
O1—C10—C2—C3 | 55.34 (18) | C3—C4—C9—N1 | 2.7 (2) |
O2—C10—C2—C1 | 53.6 (2) | C5—C4—C9—N1 | −178.89 (12) |
O1—C10—C2—C1 | −127.63 (14) | C3—C4—C9—C8 | −177.25 (12) |
C1—C2—C3—C4 | −2.9 (2) | C5—C4—C9—C8 | 1.2 (2) |
C10—C2—C3—C4 | 174.25 (12) | C2—C1—N1—C9 | 1.0 (2) |
C2—C3—C4—C5 | −177.71 (13) | Cl1—C1—N1—C9 | 177.90 (9) |
C2—C3—C4—C9 | 0.7 (2) | C8—C9—N1—C1 | 176.48 (12) |
C3—C4—C5—C6 | 177.92 (13) | C4—C9—N1—C1 | −3.4 (2) |
Experimental details
Crystal data | |
Chemical formula | C13H12ClNO2 |
Mr | 249.69 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.0391 (5), 7.2986 (6), 13.4323 (12) |
α, β, γ (°) | 98.238 (6), 90.123 (5), 96.429 (6) |
V (Å3) | 582.16 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.18 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.690, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5190, 2061, 1872 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.078, 1.06 |
No. of reflections | 2061 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.20 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).
Acknowledgements
We are grateful to all personel of the PHYSYNOR Laboratory, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, i, 211–276. Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313. CrossRef CAS Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94–99. CSD CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Michael, J.-P. (2004). Nat. Prod. Rep. 21, 650–668. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 2-chloro-3-formylquinolines occupy a prominent position as key intermediates for further annelation and various functional group inter-conversions (Abdel-Wahab et al., 2012; Michael, 2004). As part of our ongoing studies in this area (Benzerka et al., 2012, 2013), we now describe the synthesis and single-crystal X-ray structure of the title compound, (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is three times substituted by two methyl, one chlore and one ethyl carboxylate. The crystal packing can be described as double layers parallel to (010) plane (Fig. 2). It features π···π stacking, distances controid-controid between aromatic rings are from 3.6774 (9) to 4.2262 (9) Å.