organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-chloro-6-methyl­quinoline-3-carboxyl­ate

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 July 2014; accepted 22 July 2014; online 1 August 2014)

In the title compound, C13H12ClNO2, the dihedral angle between the planes of the quinoline ring system (r.m.s. deviation = 0.029 Å) and the ester group is 54.97 (6)°. The C—O—C—Cm (m = meth­yl) torsion angle is −140.62 (16)°. In the crystal, mol­ecules inter­act via aromatic ππ stacking [shortest centroid–centroid separation = 3.6774 (9) Å] generating (010) sheets.

1. Related literature

For background to 2-chloro-3-formyl­quinolines, see: Michael (2004[Michael, J.-P. (2004). Nat. Prod. Rep. 21, 650-668.]); Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, i, 211-276.]). For our previous work in this area, see: Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.], 2013[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94-99.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H12ClNO2

  • Mr = 249.69

  • Triclinic, [P \overline 1]

  • a = 6.0391 (5) Å

  • b = 7.2986 (6) Å

  • c = 13.4323 (12) Å

  • α = 98.238 (6)°

  • β = 90.123 (5)°

  • γ = 96.429 (6)°

  • V = 582.16 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 150 K

  • 0.18 × 0.14 × 0.12 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.747

  • 5190 measured reflections

  • 2061 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.06

  • 2061 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The 2-chloro-3-formylquinolines occupy a prominent position as key intermediates for further annelation and various functional group inter-conversions (Abdel-Wahab et al., 2012; Michael, 2004). As part of our ongoing studies in this area (Benzerka et al., 2012, 2013), we now describe the synthesis and single-crystal X-ray structure of the title compound, (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is three times substituted by two methyl, one chlore and one ethyl carboxylate. The crystal packing can be described as double layers parallel to (010) plane (Fig. 2). It features π···π stacking, distances controid-controid between aromatic rings are from 3.6774 (9) to 4.2262 (9) Å.

Related literature top

For background to 2-chloro-3-formylquinolines, see: Michael (2004); Abdel-Wahab et al. (2012). For our previous work in this area, see: Benzerka et al. (2012, 2013).

Experimental top

Into a solution of NaCN (3 mmol) in absolute ethanol (15 ml), was added, in portion and at 0 °C,a mixture of 1 mmol of 2-chloro-3-formyl-6-methylquinoline and activated manganese dioxide (6.7 mmol). The reaction mixture was stirred for 3 h at rt. Purification of the corresponding compound was carried out by diluting the reaction mixture with CH2Cl2 and filtering through a small column packed with 4 cm of celite and 3 cm of silica gel. The pure compound was recovered after evaporation of solvents. Colourless blocks of (I) were obtained by dissolving the pure compound in EtOH and allowing the solution to slowly evaporate at room temperature.

Refinement top

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) =1.5 or 1.2(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing of (I) viewed down the a axis.
Ethyl 2-chloro-6-methylquinoline-3-carboxylate top
Crystal data top
C13H12ClNO2Z = 2
Mr = 249.69F(000) = 260
Triclinic, P1Dx = 1.424 Mg m3
a = 6.0391 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2986 (6) ÅCell parameters from 2875 reflections
c = 13.4323 (12) Åθ = 2.8–25.0°
α = 98.238 (6)°µ = 0.32 mm1
β = 90.123 (5)°T = 150 K
γ = 96.429 (6)°BLOCK, colourless
V = 582.16 (9) Å30.18 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII
diffractometer
1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
CCD rotation images, thin slices scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.690, Tmax = 0.747k = 88
5190 measured reflectionsl = 1615
2061 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2333P]
where P = (Fo2 + 2Fc2)/3
2061 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H12ClNO2γ = 96.429 (6)°
Mr = 249.69V = 582.16 (9) Å3
Triclinic, P1Z = 2
a = 6.0391 (5) ÅMo Kα radiation
b = 7.2986 (6) ŵ = 0.32 mm1
c = 13.4323 (12) ÅT = 150 K
α = 98.238 (6)°0.18 × 0.14 × 0.12 mm
β = 90.123 (5)°
Data collection top
Bruker APEXII
diffractometer
2061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1872 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.747Rint = 0.016
5190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2061 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.6109 (2)0.4100 (2)0.31856 (11)0.0233 (3)
C110.7716 (3)0.2270 (2)0.23686 (11)0.0281 (4)
H11A0.72180.31410.27680.042*
H11B0.75820.1050.27570.042*
H11C0.92460.26440.21690.042*
C120.7931 (3)0.6667 (2)0.42998 (12)0.0356 (4)
H12A0.95310.66360.43270.043*
H12B0.72580.59670.48050.043*
C130.7400 (4)0.8609 (3)0.44891 (14)0.0491 (5)
H13A0.81050.92970.39950.074*
H13B0.79340.91710.51490.074*
H13C0.58150.86250.44470.074*
O10.70435 (19)0.58589 (15)0.33028 (8)0.0290 (3)
O20.6007 (2)0.31046 (17)0.38231 (9)0.0374 (3)
C10.3008 (2)0.27029 (19)0.19204 (11)0.0204 (3)
C20.5237 (2)0.35132 (19)0.21333 (11)0.0203 (3)
C30.6587 (2)0.36577 (19)0.13282 (11)0.0209 (3)
H30.8040.42310.14290.025*
C40.5801 (2)0.29487 (19)0.03486 (11)0.0193 (3)
C50.7131 (2)0.29932 (19)0.05125 (11)0.0216 (3)
H50.85950.35520.04410.026*
C60.6313 (2)0.22322 (19)0.14494 (11)0.0217 (3)
C70.4081 (3)0.1369 (2)0.15399 (11)0.0242 (3)
H70.35170.0830.21720.029*
C80.2740 (2)0.1305 (2)0.07286 (11)0.0231 (3)
H80.12830.07330.08120.028*
C90.3560 (2)0.21049 (19)0.02358 (11)0.0198 (3)
Cl10.11327 (6)0.26599 (5)0.29105 (3)0.02749 (13)
N10.2174 (2)0.20436 (16)0.10369 (9)0.0218 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0187 (7)0.0291 (8)0.0229 (8)0.0065 (6)0.0032 (6)0.0034 (6)
C110.0327 (9)0.0288 (8)0.0235 (8)0.0071 (7)0.0035 (7)0.0039 (6)
C120.0407 (10)0.0442 (10)0.0191 (8)0.0002 (8)0.0072 (7)0.0014 (7)
C130.0723 (14)0.0412 (11)0.0298 (10)0.0039 (10)0.0100 (9)0.0065 (8)
O10.0382 (6)0.0265 (6)0.0204 (5)0.0006 (5)0.0049 (5)0.0009 (4)
O20.0440 (7)0.0414 (7)0.0278 (6)0.0020 (5)0.0028 (5)0.0144 (5)
C10.0213 (7)0.0180 (7)0.0237 (8)0.0053 (6)0.0043 (6)0.0061 (6)
C20.0212 (7)0.0177 (7)0.0231 (7)0.0056 (6)0.0015 (6)0.0040 (6)
C30.0185 (7)0.0188 (7)0.0253 (8)0.0014 (6)0.0005 (6)0.0034 (6)
C40.0202 (7)0.0144 (7)0.0240 (7)0.0040 (5)0.0008 (6)0.0039 (6)
C50.0190 (7)0.0195 (7)0.0270 (8)0.0029 (6)0.0014 (6)0.0052 (6)
C60.0266 (8)0.0169 (7)0.0235 (7)0.0070 (6)0.0022 (6)0.0058 (6)
C70.0306 (8)0.0202 (7)0.0218 (8)0.0044 (6)0.0045 (6)0.0023 (6)
C80.0217 (7)0.0193 (7)0.0279 (8)0.0002 (6)0.0031 (6)0.0043 (6)
C90.0209 (7)0.0155 (7)0.0241 (7)0.0043 (5)0.0005 (6)0.0053 (6)
Cl10.0230 (2)0.0336 (2)0.0276 (2)0.00604 (15)0.00824 (15)0.00777 (16)
N10.0200 (6)0.0194 (6)0.0267 (7)0.0027 (5)0.0020 (5)0.0052 (5)
Geometric parameters (Å, º) top
C10—O21.1971 (18)C1—C21.419 (2)
C10—O11.3308 (18)C1—Cl11.7501 (14)
C10—C21.494 (2)C2—C31.365 (2)
C11—C61.501 (2)C3—C41.404 (2)
C11—H11A0.96C3—H30.93
C11—H11B0.96C4—C51.411 (2)
C11—H11C0.96C4—C91.421 (2)
C12—O11.4588 (19)C5—C61.368 (2)
C12—C131.475 (3)C5—H50.93
C12—H12A0.97C6—C71.420 (2)
C12—H12B0.97C7—C81.362 (2)
C13—H13A0.96C7—H70.93
C13—H13B0.96C8—C91.407 (2)
C13—H13C0.96C8—H80.93
C1—N11.2935 (19)C9—N11.3673 (19)
O2—C10—O1125.26 (14)C3—C2—C1116.71 (13)
O2—C10—C2124.26 (14)C3—C2—C10121.18 (13)
O1—C10—C2110.47 (12)C1—C2—C10122.05 (13)
C6—C11—H11A109.5C2—C3—C4120.61 (13)
C6—C11—H11B109.5C2—C3—H3119.7
H11A—C11—H11B109.5C4—C3—H3119.7
C6—C11—H11C109.5C3—C4—C5123.51 (13)
H11A—C11—H11C109.5C3—C4—C9117.37 (13)
H11B—C11—H11C109.5C5—C4—C9119.10 (13)
O1—C12—C13107.55 (14)C6—C5—C4121.45 (13)
O1—C12—H12A110.2C6—C5—H5119.3
C13—C12—H12A110.2C4—C5—H5119.3
O1—C12—H12B110.2C5—C6—C7118.37 (13)
C13—C12—H12B110.2C5—C6—C11121.79 (13)
H12A—C12—H12B108.5C7—C6—C11119.84 (13)
C12—C13—H13A109.5C8—C7—C6121.99 (14)
C12—C13—H13B109.5C8—C7—H7119
H13A—C13—H13B109.5C6—C7—H7119
C12—C13—H13C109.5C7—C8—C9119.98 (14)
H13A—C13—H13C109.5C7—C8—H8120
H13B—C13—H13C109.5C9—C8—H8120
C10—O1—C12117.45 (12)N1—C9—C8118.90 (13)
N1—C1—C2125.71 (13)N1—C9—C4122.00 (13)
N1—C1—Cl1115.40 (11)C8—C9—C4119.10 (13)
C2—C1—Cl1118.82 (11)C1—N1—C9117.48 (12)
O2—C10—O1—C122.8 (2)C9—C4—C5—C60.4 (2)
C2—C10—O1—C12178.41 (12)C4—C5—C6—C70.6 (2)
C13—C12—O1—C10140.62 (16)C4—C5—C6—C11179.88 (13)
N1—C1—C2—C32.2 (2)C5—C6—C7—C81.0 (2)
Cl1—C1—C2—C3174.62 (10)C11—C6—C7—C8179.76 (13)
N1—C1—C2—C10174.93 (13)C6—C7—C8—C90.2 (2)
Cl1—C1—C2—C108.23 (18)C7—C8—C9—N1179.20 (12)
O2—C10—C2—C3123.43 (17)C7—C8—C9—C40.9 (2)
O1—C10—C2—C355.34 (18)C3—C4—C9—N12.7 (2)
O2—C10—C2—C153.6 (2)C5—C4—C9—N1178.89 (12)
O1—C10—C2—C1127.63 (14)C3—C4—C9—C8177.25 (12)
C1—C2—C3—C42.9 (2)C5—C4—C9—C81.2 (2)
C10—C2—C3—C4174.25 (12)C2—C1—N1—C91.0 (2)
C2—C3—C4—C5177.71 (13)Cl1—C1—N1—C9177.90 (9)
C2—C3—C4—C90.7 (2)C8—C9—N1—C1176.48 (12)
C3—C4—C5—C6177.92 (13)C4—C9—N1—C13.4 (2)

Experimental details

Crystal data
Chemical formulaC13H12ClNO2
Mr249.69
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.0391 (5), 7.2986 (6), 13.4323 (12)
α, β, γ (°)98.238 (6), 90.123 (5), 96.429 (6)
V3)582.16 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.690, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
5190, 2061, 1872
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.06
No. of reflections2061
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

 

Acknowledgements

We are grateful to all personel of the PHYSYNOR Laboratory, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, i, 211–276.  Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.  CrossRef CAS Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94–99.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichael, J.-P. (2004). Nat. Prod. Rep. 21, 650–668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds