organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o983-o984

Crystal structure of N-(3-chloro-1-methyl-1H-indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: a_gamouh@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 July 2014; accepted 1 August 2014; online 9 August 2014)

In the title compound, C15H14ClN3O3S, the dihedral angle between the planes of the indazole ring system (r.m.s. deviation = 0.007 Å) and the benzene ring is 89.05 (7)°. The meth­oxy C atom deviates from its attached ring by 0.196 (3) Å. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. The dimers are connected into [010] chains by C—H⋯O inter­actions.

1. Related literature

For the biological activity of sulfonamides, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2014[Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14ClN3O3S

  • Mr = 351.80

  • Triclinic, [P \overline 1]

  • a = 8.2023 (1) Å

  • b = 10.6312 (2) Å

  • c = 10.8957 (2) Å

  • α = 117.523 (1)°

  • β = 93.095 (1)°

  • γ = 103.166 (1)°

  • V = 806.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.31 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 20115 measured reflections

  • 4526 independent reflections

  • 3707 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 1.03

  • 4526 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.89 2.04 2.9286 (17) 175
C5—H5⋯O3ii 0.93 2.56 3.426 (2) 156
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The sulfonamide functional group is a structure with broad importance, as it is found in numerous medicinal agents (El-Sayed, et al., 2011; Mustafa, et al., 2012; Scozzafava, et al., 2003. Previously, we identified a series of indazoles bearing a sulfonamide moiety with good antiproliferative activities (Abbassi, et al., 2012; Abbassi, et al., 2013; Chicha, et al., 2014).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1 N2 C2 to C8) almost coplanar, with a maximum deviation of 0.010 (2) Å for C5 atom (Fig.1). The dihedral angle between the indazol system and the plane through the benzene ring (C9 to C14) is of 89.05 (7)°.

The cohesion of the crystal structure is ensured by N3–H3N···O2 hydrogen bonds between molecules forming dimers, which are linked together by C5–H5···O3 interaction and forming [010] chains as shown in Fig.2 and Table 1.

Related literature top

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2014).

Experimental top

A mixture of 1-methyl-3-chloro-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 60 °C for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 2:8). The title compound was recrystallized from ethanol solution. Yield: 56%, PF: 140–142°C.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.86 Å for methyl, aromatic CH and NH, respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound, showing molecules linked by N3–H3N···O2 hydrogen bond and forming dimers linked by C5–H5···O3 interaction.
N-(3-Chloro-1-methyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C15H14ClN3O3SZ = 2
Mr = 351.80F(000) = 364
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2023 (1) ÅCell parameters from 4526 reflections
b = 10.6312 (2) Åθ = 2.6–29.6°
c = 10.8957 (2) ŵ = 0.38 mm1
α = 117.523 (1)°T = 296 K
β = 93.095 (1)°Block, colourless
γ = 103.166 (1)°0.40 × 0.36 × 0.31 mm
V = 806.36 (2) Å3
Data collection top
Bruker X8 APEX CCD
diffractometer
4526 independent reflections
Radiation source: fine-focus sealed tube3707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.693, Tmax = 0.747k = 1414
20115 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1878P]
where P = (Fo2 + 2Fc2)/3
4526 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H14ClN3O3Sγ = 103.166 (1)°
Mr = 351.80V = 806.36 (2) Å3
Triclinic, P1Z = 2
a = 8.2023 (1) ÅMo Kα radiation
b = 10.6312 (2) ŵ = 0.38 mm1
c = 10.8957 (2) ÅT = 296 K
α = 117.523 (1)°0.40 × 0.36 × 0.31 mm
β = 93.095 (1)°
Data collection top
Bruker X8 APEX CCD
diffractometer
4526 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3707 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.028
20115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
4526 reflectionsΔρmin = 0.37 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5360 (3)0.1820 (2)0.2354 (2)0.0641 (5)
H1A0.51660.11850.33550.096*
H1B0.43050.19860.20720.096*
H1C0.58010.13610.18850.096*
C20.8383 (2)0.47591 (16)0.23208 (15)0.0391 (3)
C30.84060 (18)0.54753 (16)0.08554 (14)0.0352 (3)
C40.72093 (19)0.44264 (17)0.06796 (16)0.0397 (3)
C50.6874 (2)0.4716 (2)0.06598 (18)0.0493 (4)
H50.60970.40170.07870.059*
C60.7734 (2)0.60633 (19)0.17665 (17)0.0476 (4)
H60.75150.62890.26620.057*
C70.8951 (2)0.71369 (17)0.16058 (14)0.0385 (3)
C80.93096 (19)0.68456 (16)0.02938 (14)0.0375 (3)
H81.01200.75320.01770.045*
C90.88896 (18)1.06974 (16)0.26748 (13)0.0364 (3)
C100.83288 (19)1.04012 (17)0.13088 (14)0.0407 (3)
H100.88150.98390.05680.049*
C110.7053 (2)1.09469 (18)0.10689 (15)0.0441 (3)
H110.66771.07540.01620.053*
C120.6321 (2)1.17864 (17)0.21742 (16)0.0413 (3)
C130.6836 (2)1.20357 (17)0.35215 (16)0.0435 (3)
H130.63191.25660.42540.052*
C140.8118 (2)1.14935 (17)0.37674 (14)0.0413 (3)
H140.84691.16610.46700.050*
C150.4427 (3)1.3276 (3)0.2942 (3)0.0797 (7)
H15A0.35971.35730.25640.120*
H15B0.53241.41360.36000.120*
H15C0.38951.27670.34140.120*
N10.65760 (18)0.32210 (15)0.19782 (15)0.0478 (3)
N20.72912 (18)0.34244 (15)0.29918 (14)0.0456 (3)
N30.98123 (19)0.84656 (15)0.28741 (13)0.0459 (3)
H3N0.94550.85630.36610.057 (5)*
O11.16088 (15)0.99481 (14)0.19715 (12)0.0520 (3)
O21.13503 (15)1.10282 (14)0.44851 (11)0.0535 (3)
O30.51174 (17)1.23162 (16)0.18293 (14)0.0575 (3)
S11.05777 (5)1.00891 (4)0.30176 (3)0.04069 (12)
Cl10.95605 (6)0.54559 (5)0.32303 (4)0.05614 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0617 (11)0.0421 (9)0.0786 (13)0.0032 (8)0.0160 (10)0.0262 (9)
C20.0482 (8)0.0355 (7)0.0327 (6)0.0140 (6)0.0112 (6)0.0147 (6)
C30.0424 (7)0.0354 (7)0.0325 (6)0.0176 (6)0.0115 (5)0.0170 (5)
C40.0443 (7)0.0386 (8)0.0420 (7)0.0166 (6)0.0133 (6)0.0215 (6)
C50.0585 (10)0.0506 (9)0.0507 (9)0.0187 (8)0.0230 (7)0.0315 (8)
C60.0631 (10)0.0545 (10)0.0396 (7)0.0273 (8)0.0224 (7)0.0285 (7)
C70.0492 (8)0.0416 (8)0.0314 (6)0.0243 (6)0.0126 (6)0.0174 (6)
C80.0468 (7)0.0363 (7)0.0308 (6)0.0157 (6)0.0108 (5)0.0154 (5)
C90.0443 (7)0.0328 (7)0.0264 (6)0.0081 (5)0.0090 (5)0.0110 (5)
C100.0462 (8)0.0430 (8)0.0263 (6)0.0092 (6)0.0109 (5)0.0128 (6)
C110.0498 (8)0.0489 (9)0.0311 (6)0.0088 (7)0.0072 (6)0.0197 (6)
C120.0446 (8)0.0372 (7)0.0413 (7)0.0073 (6)0.0085 (6)0.0203 (6)
C130.0540 (9)0.0394 (8)0.0344 (7)0.0165 (7)0.0153 (6)0.0137 (6)
C140.0535 (8)0.0406 (8)0.0256 (6)0.0146 (6)0.0103 (6)0.0120 (5)
C150.0883 (16)0.0877 (17)0.0909 (17)0.0560 (14)0.0333 (14)0.0502 (14)
N10.0523 (8)0.0374 (7)0.0485 (7)0.0079 (6)0.0134 (6)0.0187 (6)
N20.0536 (8)0.0367 (7)0.0393 (6)0.0111 (6)0.0103 (6)0.0134 (5)
N30.0649 (8)0.0476 (8)0.0272 (5)0.0231 (6)0.0116 (5)0.0165 (5)
O10.0485 (6)0.0604 (8)0.0370 (5)0.0149 (5)0.0163 (5)0.0151 (5)
O20.0533 (7)0.0610 (8)0.0281 (5)0.0122 (6)0.0018 (4)0.0097 (5)
O30.0610 (7)0.0654 (8)0.0594 (7)0.0281 (6)0.0141 (6)0.0362 (7)
S10.0437 (2)0.0454 (2)0.02480 (16)0.01330 (15)0.00761 (13)0.01019 (14)
Cl10.0743 (3)0.0487 (2)0.0361 (2)0.0060 (2)0.01902 (18)0.01758 (17)
Geometric parameters (Å, º) top
C1—N11.448 (2)C9—S11.7465 (16)
C1—H1A0.9600C10—C111.374 (2)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.392 (2)
C2—N21.320 (2)C11—H110.9300
C2—C31.4129 (18)C12—O31.357 (2)
C2—Cl11.7085 (15)C12—C131.388 (2)
C3—C81.401 (2)C13—C141.378 (2)
C3—C41.401 (2)C13—H130.9300
C4—N11.362 (2)C14—H140.9300
C4—C51.403 (2)C15—O31.423 (3)
C5—C61.362 (2)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.419 (2)C15—H15C0.9600
C6—H60.9300N1—N21.3577 (19)
C7—C81.3796 (19)N3—S11.6260 (15)
C7—N31.4283 (19)N3—H3N0.8897
C8—H80.9300O1—S11.4286 (11)
C9—C141.3884 (19)O2—S11.4429 (11)
C9—C101.3974 (18)
N1—C1—H1A109.5C10—C11—C12120.42 (13)
N1—C1—H1B109.5C10—C11—H11119.8
H1A—C1—H1B109.5C12—C11—H11119.8
N1—C1—H1C109.5O3—C12—C13124.39 (14)
H1A—C1—H1C109.5O3—C12—C11115.54 (14)
H1B—C1—H1C109.5C13—C12—C11120.08 (15)
N2—C2—C3112.74 (13)C14—C13—C12119.65 (14)
N2—C2—Cl1120.30 (11)C14—C13—H13120.2
C3—C2—Cl1126.95 (12)C12—C13—H13120.2
C8—C3—C4121.43 (13)C13—C14—C9120.33 (13)
C8—C3—C2135.32 (14)C13—C14—H14119.8
C4—C3—C2103.24 (13)C9—C14—H14119.8
N1—C4—C3107.20 (13)O3—C15—H15A109.5
N1—C4—C5131.85 (15)O3—C15—H15B109.5
C3—C4—C5120.95 (14)H15A—C15—H15B109.5
C6—C5—C4117.13 (15)O3—C15—H15C109.5
C6—C5—H5121.4H15A—C15—H15C109.5
C4—C5—H5121.4H15B—C15—H15C109.5
C5—C6—C7122.58 (14)N2—N1—C4111.53 (13)
C5—C6—H6118.7N2—N1—C1119.65 (15)
C7—C6—H6118.7C4—N1—C1128.76 (15)
C8—C7—C6120.47 (14)C2—N2—N1105.29 (12)
C8—C7—N3123.47 (14)C7—N3—S1125.87 (10)
C6—C7—N3115.98 (13)C7—N3—H3N116.4
C7—C8—C3117.42 (14)S1—N3—H3N109.8
C7—C8—H8121.3C12—O3—C15117.58 (15)
C3—C8—H8121.3O1—S1—O2119.16 (7)
C14—C9—C10120.00 (14)O1—S1—N3108.43 (7)
C14—C9—S1119.80 (11)O2—S1—N3104.11 (7)
C10—C9—S1120.20 (11)O1—S1—C9107.91 (7)
C11—C10—C9119.45 (13)O2—S1—C9108.05 (7)
C11—C10—H10120.3N3—S1—C9108.82 (7)
C9—C10—H10120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.892.042.9286 (17)175
C5—H5···O3ii0.932.563.426 (2)156
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.892.042.9286 (17)175
C5—H5···O3ii0.932.563.426 (2)156
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for the financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o983-o984
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds