organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1005-o1006

Crystal structure of 1-ethyl­pyrazolo[3,4-d]pyrimidine-4(5H)-thione

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 July 2014; accepted 9 August 2014; online 16 August 2014)

In the title compound, C7H8N4S, the methyl C atom is displaced by 1.232 (7) Å from the mean plane of the pyrazolo­[3,4-d]pyrimidine ring system (r.m.s. deviation = 0.007 Å). The N—N—C—Cm (m = meth­yl) torsion angle is −60.3 (6)°. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, generating [010] chains, which are reinforced by C—H⋯N inter­actions. The chains are cross-linked by weak C—H⋯S hydrogen bonds, generating (001) sheets.

1. Related literature

For the biological activity of pyrazolo­[3,4-d]pyrimidine deriv­atives, see: Rashad et al. (2008[Rashad, A. E., Hegab, M. I., Abdel-Megeid, R., Micky, J. A. & Abdel-Megeid, F. M. E. (2008). Bioorg. Med. Chem. 16, 7102-7106.], 2011[Rashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019-1026.]); Ballell et al. (2007[Ballell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736-1740.]). For related structures, see: El Fal et al. (2013[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.]); Radi et al. (2013[Radi, M., Bernardo, V., Vignaroli, G., Brai, A., Biava, M., Schenone, S. & Botta, M. (2013). Tetrahedron Lett. 54, 5204-5206.]); Alsubari et al. (2011[Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H8N4S

  • Mr = 180.23

  • Monoclinic, P 21

  • a = 4.472 (4) Å

  • b = 5.353 (4) Å

  • c = 17.573 (12) Å

  • β = 93.71 (4)°

  • V = 419.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.38 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.578, Tmax = 0.746

  • 4028 measured reflections

  • 1704 independent reflections

  • 1242 reflections with I > 2σ(I)

  • Rint = 0.059

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.139

  • S = 1.01

  • 1704 reflections

  • 109 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 652 Friedel pairs

  • Absolute structure parameter: −0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.89 2.48 3.333 (4) 161
C5—H5⋯S1ii 0.93 2.75 3.685 (5) 179
C3—H3⋯N2iii 0.93 2.60 3.528 (6) 174
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y+1, z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazolo [3,4-d] pyrimidine derivatives have attracted considerable attention from researchers due to their bioactive and pharmaceutical properties. Many members of this family are widely used as antiviral (Rashad et al., 2008); anti-mycobacterial (Ballell et al. 2007) and anticancer agents (Rashad et al. 2011). The present paper is a continuation of our research work devoted to the development of pyrazolo [3,4-d] pyrimidine derivatives with potential pharmacological activities (El Fal et al., 2013; Radi et al., 2013; Alsubari et al., 2011).

The molecule of the title compound is build up from two fused five- and six-membered heterocycles linked to an ethyl group and to S atom as shown in Fig.1. The pyrazolo[3,4-d]pyrimidine ring is nearly perpendicular to the ethyl group as indicated by the torsion angle C7C6N3N4 of -60.3 (6)°.

In the crystal, the molecules are linked together by a weak intermolecular N1–H1···S1, C5–H5···S1 and C3–H3···N2 interactions, in the way to build a two-dimensional network (see Fig.2 and Table 1).

Related literature top

For the biological activity of pyrazolo[3,4-d]pyrimidine derivatives, see: Rashad et al. (2008, 2011); Ballell et al. (2007). For related structures, see: El Fal et al. (2013); Radi et al. (2013); Alsubari et al. (2011).

Experimental top

(0,54 g, 3.04 mmol) of 1-ethyl-pyrazolo [3, 4 - d] pyrimidin-4 (5H)-one and (0,84 g, 3.65 mmol) of phosphorus pentasulfide were refluxed in pyridine for 4 h. Then the solvent is evaporated under reduced pressure; the precipitate formed is washed with hot water and recrystallized from ethanol solution to afford the title compound as yellow blocks.

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å, (methyl). All hydrogen with Uiso(H) = 1.2 Ueq (aromatic and methylene) and Uiso(H) = 1.5 Ueq for the methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Structure projection along (0 1 1) of the title compound, showing molecules linked through hydrogen bonds (dashed lines).
1-Ethylpyrazolo[3,4-d]pyrimidine-4(5H)-thione top
Crystal data top
C7H8N4SF(000) = 188
Mr = 180.23Dx = 1.426 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1704 reflections
a = 4.472 (4) Åθ = 3.5–27.5°
b = 5.353 (4) ŵ = 0.33 mm1
c = 17.573 (12) ÅT = 296 K
β = 93.71 (4)°Block, yellow
V = 419.8 (5) Å30.38 × 0.34 × 0.29 mm
Z = 2
Data collection top
Bruker X8 APEX CCD
diffractometer
1704 independent reflections
Radiation source: fine-focus sealed tube1242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.578, Tmax = 0.746k = 65
4028 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1704 reflectionsΔρmax = 0.29 e Å3
109 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 652 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C7H8N4SV = 419.8 (5) Å3
Mr = 180.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.472 (4) ŵ = 0.33 mm1
b = 5.353 (4) ÅT = 296 K
c = 17.573 (12) Å0.38 × 0.34 × 0.29 mm
β = 93.71 (4)°
Data collection top
Bruker X8 APEX CCD
diffractometer
1704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1242 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.746Rint = 0.059
4028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.29 e Å3
S = 1.01Δρmin = 0.36 e Å3
1704 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 652 Friedel pairs
109 parametersAbsolute structure parameter: 0.11 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2656 (8)0.2169 (7)0.6200 (2)0.0340 (9)
C20.3666 (8)0.2465 (8)0.6972 (2)0.0349 (9)
C30.5729 (9)0.1222 (9)0.7490 (2)0.0421 (10)
H30.68560.01660.73700.050*
C40.2506 (9)0.4396 (7)0.7391 (2)0.0386 (10)
C50.0448 (9)0.5752 (8)0.6444 (2)0.0438 (11)
H50.18740.68530.62300.053*
C60.3360 (13)0.5872 (10)0.8749 (3)0.0669 (16)
H6A0.19250.71650.85950.080*
H6B0.52290.66750.89190.080*
C70.2207 (15)0.4383 (15)0.9390 (3)0.091 (3)
H7A0.18760.54710.98100.137*
H7B0.36520.31310.95500.137*
H7C0.03550.35920.92210.137*
N10.0543 (7)0.3928 (6)0.59849 (19)0.0407 (9)
H10.02560.40460.55090.049*
N20.0419 (8)0.6091 (7)0.71546 (19)0.0435 (9)
N30.3849 (9)0.4260 (7)0.80986 (17)0.0482 (10)
N40.5830 (8)0.2300 (8)0.81616 (19)0.0513 (10)
S10.3799 (2)0.0022 (2)0.55937 (5)0.0413 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (18)0.030 (2)0.038 (2)0.0022 (18)0.0034 (16)0.0046 (17)
C20.0340 (18)0.030 (2)0.040 (2)0.0013 (19)0.0000 (15)0.0005 (18)
C30.046 (2)0.039 (2)0.040 (2)0.011 (2)0.0064 (17)0.0030 (19)
C40.041 (2)0.036 (3)0.038 (2)0.0003 (19)0.0021 (16)0.0011 (17)
C50.036 (2)0.038 (3)0.056 (3)0.0102 (19)0.0030 (18)0.005 (2)
C60.089 (4)0.067 (4)0.045 (3)0.002 (3)0.005 (2)0.017 (2)
C70.094 (4)0.128 (8)0.053 (3)0.003 (5)0.016 (3)0.009 (3)
N10.0406 (18)0.037 (2)0.0440 (19)0.0066 (17)0.0044 (15)0.0078 (16)
N20.050 (2)0.034 (2)0.046 (2)0.0076 (18)0.0027 (16)0.0015 (16)
N30.059 (2)0.052 (3)0.0337 (17)0.0086 (19)0.0001 (15)0.0048 (16)
N40.051 (2)0.058 (3)0.044 (2)0.015 (2)0.0072 (16)0.0002 (18)
S10.0449 (5)0.0390 (6)0.0388 (5)0.0052 (6)0.0053 (4)0.0052 (5)
Geometric parameters (Å, º) top
C1—N11.370 (5)C5—H50.9300
C1—C21.410 (5)C6—N31.459 (5)
C1—S11.669 (4)C6—C71.499 (7)
C2—C41.390 (5)C6—H6A0.9700
C2—C31.419 (6)C6—H6B0.9700
C3—N41.312 (5)C7—H7A0.9600
C3—H30.9300C7—H7B0.9600
C4—N31.347 (5)C7—H7C0.9600
C4—N21.348 (5)N1—H10.8900
C5—N21.296 (5)N3—N41.373 (5)
C5—N11.359 (5)
N1—C1—C2111.1 (3)N3—C6—H6B109.5
N1—C1—S1122.1 (3)C7—C6—H6B109.5
C2—C1—S1126.8 (3)H6A—C6—H6B108.1
C4—C2—C1119.1 (4)C6—C7—H7A109.5
C4—C2—C3104.9 (3)C6—C7—H7B109.5
C1—C2—C3136.0 (4)H7A—C7—H7B109.5
N4—C3—C2110.8 (4)C6—C7—H7C109.5
N4—C3—H3124.6H7A—C7—H7C109.5
C2—C3—H3124.6H7B—C7—H7C109.5
N3—C4—N2125.4 (4)C5—N1—C1125.2 (3)
N3—C4—C2106.9 (4)C5—N1—H1112.4
N2—C4—C2127.7 (3)C1—N1—H1122.4
N2—C5—N1125.7 (4)C5—N2—C4111.2 (3)
N2—C5—H5117.1C4—N3—N4111.2 (3)
N1—C5—H5117.1C4—N3—C6127.6 (4)
N3—C6—C7110.5 (5)N4—N3—C6121.2 (4)
N3—C6—H6A109.5C3—N4—N3106.2 (3)
C7—C6—H6A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.892.483.333 (4)161
C5—H5···S1ii0.932.753.685 (5)179
C3—H3···N2iii0.932.603.528 (6)174
Symmetry codes: (i) x, y+1/2, z+1; (ii) x1, y+1, z; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.892.483.333 (4)161
C5—H5···S1ii0.932.753.685 (5)179
C3—H3···N2iii0.932.603.528 (6)174
Symmetry codes: (i) x, y+1/2, z+1; (ii) x1, y+1, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V-Agdal, Rabat, Morocco, for financial support.

References

First citationAlsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBallell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736–1740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRadi, M., Bernardo, V., Vignaroli, G., Brai, A., Biava, M., Schenone, S. & Botta, M. (2013). Tetrahedron Lett. 54, 5204–5206.  Web of Science CrossRef CAS Google Scholar
First citationRashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRashad, A. E., Hegab, M. I., Abdel-Megeid, R., Micky, J. A. & Abdel-Megeid, F. M. E. (2008). Bioorg. Med. Chem. 16, 7102–7106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1005-o1006
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds