organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Crystal structure of 2-(4-chloro­phen­yl)-4-(1H-indol-3-yl)-6-phenyl­pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 July 2014; accepted 1 August 2014; online 6 August 2014)

In the title compound, C26H16ClN3, the dihedral angles between the central pyridine ring and the pendant phenyl, chloro­benzene and indole rings are 18.52 (12), 48.97 (11) and 21.20 (10)°, respectively. An intra­molecular C—H⋯Nc (c = cyanide) hydrogen bond occurs. In the crystal, inversion dimers linked by pairs of N—H⋯Nc hydrogen bonds generate R22(16) loops.

1. Related literature

For the biological activity of substituted pyridine derivatives, see: Yao et al. (1994[Yao, S. K., Ober, J. C., Ferguson, J. J., Maffrand, J. P., Anderson, H. V., Buja, L. M. & Willerson, J. T. (1994). Am. J. Physiol. pp. H488-H493.]). For a related structure, see: Vishnupriya et al. (2014[Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o968-o969.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H16ClN3

  • Mr = 405.87

  • Monoclinic, P 21 /n

  • a = 7.6533 (4) Å

  • b = 11.4822 (7) Å

  • c = 23.2906 (14) Å

  • β = 94.351 (1)°

  • V = 2040.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.50 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.986

  • 15210 measured reflections

  • 4194 independent reflections

  • 3000 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.04

  • 4194 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C58—H58⋯N2 0.93 2.58 3.285 (4) 133
N3—H3⋯N2i 0.86 2.20 3.037 (3) 164
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thienopyridines have been used as antithrombotic agents (Yao et al., 1994) against platelet aggregation. As part of our ongoing studies in this area (Vishnupriya et al., 2014) the title compound was investigated.

The deviation of the nitrile atoms (C41,N2) from the mean plane of the pyridine ring system is 0.0579 (5) and 0.0826 (2) Å. The shortening of the C—N distances [1.340 (3) and 1.348 (3) Å] and the opening of the N1–C4–C5 angle [120.83 (2)°] may be attributed to the size of the substituent at C1, correlating well with the values observed in the ortho-substituted derivative. The carbonitrile group lies almost in the plane of the attached planar pyridine ring system.

The crystal structure features a N3—H3···N2(i) [symmetry code: (i) 2 - x, 2 - y, -z] hydrogen bonded R22 (16) motif (Fig. 2). No significant ππ stacking interaction between neighboring aromatic rings or C—H···π interaction towards them are observed.

Related literature top

For the biological activity of substituted pyridine derivatives, see: Yao et al. (1994). For a related structure, see: Vishnupriya et al. (2014).

Experimental top

A mixture of 3-(1H-indol-3-yl)-3-oxopropanenitrile 1 (1 mmol), 4,4,4-trifluoro-1-phenylbutane-1,3-dione 2 (1 mmol) and 4-chloro benzaldehyde 3 (1 mmol) in the presence of ammonium acetate (400 mmol) under solvent-free condition was heated at 110 °C for 6 h. After completion of the reaction (TLC), the reaction mixture was poured into water and extracted with dichloromethane. After removal of the solvent, the residue was chromatographed over silica gel (230–400 mesh) using petroleum ether-ethyl acetate mixture (7:3 v/v), which afforded the pure compound. Melting point:273 °C, Yield: 70%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso = 1.2Ueq(C, N) for N, CH2 and CH atoms and Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing view of the compound showing molecules linked by a pair of N—H···N interactions (dotted lines).
2-(4-Chlorophenyl)-4-(1H-indol-3-yl)-6-phenylpyridine-3-carbonitrile top
Crystal data top
C26H16ClN3F(000) = 840
Mr = 405.87Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 7.6533 (4) Åθ = 2–27°
b = 11.4822 (7) ŵ = 0.21 mm1
c = 23.2906 (14) ÅT = 293 K
β = 94.351 (1)°Block, colourless
V = 2040.8 (2) Å30.50 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4194 independent reflections
Radiation source: fine-focus sealed tube3000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1413
Tmin = 0.958, Tmax = 0.986l = 2919
15210 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.054P)2 + 0.8601P]
where P = (Fo2 + 2Fc2)/3
4194 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C26H16ClN3V = 2040.8 (2) Å3
Mr = 405.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6533 (4) ŵ = 0.21 mm1
b = 11.4822 (7) ÅT = 293 K
c = 23.2906 (14) Å0.50 × 0.25 × 0.20 mm
β = 94.351 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3000 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.986Rint = 0.028
15210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4194 reflectionsΔρmin = 0.40 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2617 (3)0.54731 (16)0.00655 (10)0.0574 (5)
C20.2444 (3)0.53305 (18)0.06568 (10)0.0627 (5)
H20.25890.59660.08960.075*
C30.2057 (3)0.42467 (17)0.08943 (10)0.0603 (5)
C40.1803 (3)0.33296 (17)0.05109 (10)0.0605 (5)
C50.1900 (3)0.35418 (17)0.00869 (10)0.0598 (5)
C110.3096 (3)0.66136 (17)0.02012 (10)0.0580 (5)
C120.2778 (3)0.6854 (2)0.07626 (11)0.0704 (6)
H120.22920.62830.09850.085*
C130.3173 (4)0.7936 (2)0.10002 (12)0.0806 (7)
H130.29410.80910.13790.097*
C140.3902 (4)0.8774 (2)0.06809 (14)0.0895 (8)
H140.41300.95100.08350.107*
C150.4297 (5)0.8525 (2)0.01292 (14)0.1014 (10)
H150.48460.90850.00830.122*
C160.3893 (4)0.74587 (19)0.01150 (12)0.0785 (7)
H160.41530.73050.04910.094*
C310.1913 (3)0.41209 (18)0.15290 (10)0.0613 (5)
C320.0952 (3)0.49362 (19)0.18691 (11)0.0721 (6)
H320.03700.55330.16920.087*
C330.0853 (3)0.4870 (2)0.24595 (12)0.0762 (7)
H330.01990.54130.26800.091*
C340.1727 (3)0.3996 (2)0.27214 (11)0.0714 (6)
C350.2690 (3)0.3182 (2)0.23988 (12)0.0763 (7)
H350.32750.25920.25790.092*
C360.2779 (3)0.3248 (2)0.18073 (11)0.0707 (6)
H360.34300.26980.15900.085*
C410.1423 (3)0.21813 (19)0.07380 (11)0.0692 (6)
C510.1586 (3)0.26723 (17)0.05255 (11)0.0630 (6)
C520.2163 (3)0.27513 (18)0.11280 (11)0.0674 (6)
C530.3179 (3)0.3535 (2)0.14722 (12)0.0778 (7)
H530.36380.41980.13110.093*
C540.3493 (4)0.3314 (3)0.20519 (13)0.0965 (9)
H540.41740.38300.22810.116*
C550.2800 (5)0.2320 (3)0.23029 (15)0.1080 (11)
H550.30050.21980.26970.130*
C560.1834 (5)0.1534 (3)0.19779 (15)0.1012 (10)
H560.14020.08670.21440.121*
C570.1506 (4)0.1750 (2)0.13923 (13)0.0793 (8)
C580.0637 (3)0.16548 (19)0.04622 (12)0.0762 (7)
H580.01010.13820.01160.091*
N10.2322 (2)0.46053 (14)0.02994 (8)0.0597 (4)
N20.1113 (3)0.12741 (17)0.09152 (11)0.0913 (7)
N30.0600 (3)0.11130 (17)0.09728 (11)0.0870 (7)
H30.00830.04620.10270.104*
Cl10.15880 (11)0.38830 (8)0.34663 (3)0.0995 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0505 (11)0.0401 (10)0.0811 (15)0.0067 (8)0.0018 (10)0.0034 (10)
C20.0666 (13)0.0441 (10)0.0768 (15)0.0091 (9)0.0018 (11)0.0061 (10)
C30.0532 (11)0.0453 (10)0.0819 (15)0.0039 (9)0.0027 (10)0.0022 (10)
C40.0544 (12)0.0409 (10)0.0863 (16)0.0055 (8)0.0065 (10)0.0016 (10)
C50.0513 (11)0.0407 (10)0.0880 (16)0.0045 (8)0.0090 (10)0.0050 (10)
C110.0540 (11)0.0424 (10)0.0765 (14)0.0055 (8)0.0023 (10)0.0028 (10)
C120.0736 (15)0.0545 (12)0.0825 (16)0.0103 (11)0.0020 (12)0.0030 (11)
C130.0880 (18)0.0691 (15)0.0830 (17)0.0071 (13)0.0048 (13)0.0115 (13)
C140.107 (2)0.0522 (13)0.107 (2)0.0207 (13)0.0058 (17)0.0129 (14)
C150.143 (3)0.0541 (14)0.108 (2)0.0385 (16)0.016 (2)0.0021 (15)
C160.1008 (19)0.0495 (12)0.0855 (17)0.0226 (12)0.0087 (14)0.0010 (11)
C310.0568 (12)0.0474 (11)0.0789 (15)0.0062 (9)0.0001 (10)0.0001 (10)
C320.0752 (15)0.0486 (11)0.0911 (18)0.0061 (11)0.0034 (13)0.0035 (11)
C330.0784 (16)0.0579 (13)0.0899 (18)0.0005 (12)0.0088 (13)0.0089 (13)
C340.0670 (14)0.0670 (14)0.0799 (16)0.0088 (11)0.0040 (12)0.0073 (12)
C350.0735 (15)0.0711 (15)0.0862 (18)0.0094 (12)0.0172 (13)0.0007 (13)
C360.0646 (14)0.0624 (13)0.0848 (17)0.0105 (11)0.0036 (12)0.0076 (12)
C410.0672 (14)0.0488 (12)0.0929 (17)0.0070 (10)0.0150 (12)0.0013 (11)
C510.0625 (13)0.0426 (10)0.0856 (16)0.0006 (9)0.0168 (11)0.0055 (10)
C520.0669 (14)0.0478 (11)0.0909 (17)0.0106 (10)0.0283 (12)0.0071 (11)
C530.0870 (17)0.0637 (14)0.0839 (17)0.0159 (13)0.0157 (13)0.0010 (13)
C540.111 (2)0.087 (2)0.092 (2)0.0328 (17)0.0149 (17)0.0087 (17)
C550.136 (3)0.109 (3)0.084 (2)0.050 (2)0.041 (2)0.0164 (19)
C560.119 (2)0.0805 (19)0.111 (2)0.0301 (18)0.054 (2)0.0272 (19)
C570.0857 (17)0.0566 (13)0.101 (2)0.0170 (12)0.0415 (15)0.0166 (14)
C580.0781 (16)0.0486 (12)0.1046 (19)0.0086 (11)0.0249 (14)0.0076 (12)
N10.0576 (10)0.0422 (8)0.0795 (12)0.0059 (7)0.0059 (8)0.0044 (8)
N20.1034 (17)0.0503 (11)0.1236 (19)0.0162 (11)0.0313 (14)0.0159 (12)
N30.0934 (15)0.0496 (11)0.1231 (19)0.0065 (10)0.0430 (14)0.0156 (12)
Cl10.1063 (6)0.1147 (6)0.0785 (5)0.0048 (4)0.0132 (4)0.0148 (4)
Geometric parameters (Å, º) top
C1—N11.340 (3)C32—H320.9300
C1—C21.383 (3)C33—C341.375 (3)
C1—C111.483 (3)C33—H330.9300
C2—C31.385 (3)C34—C351.377 (3)
C2—H20.9300C34—Cl11.735 (3)
C3—C41.404 (3)C35—C361.376 (3)
C3—C311.481 (3)C35—H350.9300
C4—C51.410 (3)C36—H360.9300
C4—C411.442 (3)C41—N21.139 (3)
C5—N11.348 (3)C51—C581.378 (3)
C5—C511.461 (3)C51—C521.441 (3)
C11—C121.376 (3)C52—C531.401 (4)
C11—C161.387 (3)C52—C571.414 (3)
C12—C131.384 (3)C53—C541.377 (4)
C12—H120.9300C53—H530.9300
C13—C141.361 (4)C54—C551.404 (5)
C13—H130.9300C54—H540.9300
C14—C151.373 (4)C55—C561.360 (5)
C14—H140.9300C55—H550.9300
C15—C161.375 (3)C56—C571.390 (4)
C15—H150.9300C56—H560.9300
C16—H160.9300C57—N31.367 (4)
C31—C361.389 (3)C58—N31.344 (3)
C31—C321.399 (3)C58—H580.9300
C32—C331.374 (3)N3—H30.8600
N1—C1—C2122.37 (18)C32—C33—H33120.2
N1—C1—C11116.05 (19)C34—C33—H33120.2
C2—C1—C11121.56 (18)C33—C34—C35120.8 (2)
C1—C2—C3120.38 (19)C33—C34—Cl1120.2 (2)
C1—C2—H2119.8C35—C34—Cl1119.0 (2)
C3—C2—H2119.8C36—C35—C34119.5 (2)
C2—C3—C4117.1 (2)C36—C35—H35120.2
C2—C3—C31118.94 (19)C34—C35—H35120.2
C4—C3—C31123.95 (19)C35—C36—C31121.2 (2)
C3—C4—C5119.94 (18)C35—C36—H36119.4
C3—C4—C41119.1 (2)C31—C36—H36119.4
C5—C4—C41120.95 (19)N2—C41—C4179.6 (3)
N1—C5—C4120.84 (18)C58—C51—C52106.1 (2)
N1—C5—C51114.2 (2)C58—C51—C5128.2 (2)
C4—C5—C51124.97 (18)C52—C51—C5125.68 (19)
C12—C11—C16118.8 (2)C53—C52—C57118.2 (3)
C12—C11—C1121.25 (19)C53—C52—C51135.5 (2)
C16—C11—C1120.0 (2)C57—C52—C51106.3 (2)
C11—C12—C13120.7 (2)C54—C53—C52119.4 (3)
C11—C12—H12119.7C54—C53—H53120.3
C13—C12—H12119.7C52—C53—H53120.3
C14—C13—C12120.2 (3)C53—C54—C55121.0 (3)
C14—C13—H13119.9C53—C54—H54119.5
C12—C13—H13119.9C55—C54—H54119.5
C13—C14—C15119.5 (2)C56—C55—C54120.9 (3)
C13—C14—H14120.3C56—C55—H55119.5
C15—C14—H14120.3C54—C55—H55119.5
C14—C15—C16121.0 (3)C55—C56—C57118.5 (3)
C14—C15—H15119.5C55—C56—H56120.7
C16—C15—H15119.5C57—C56—H56120.7
C15—C16—C11119.8 (3)N3—C57—C56130.5 (3)
C15—C16—H16120.1N3—C57—C52107.6 (2)
C11—C16—H16120.1C56—C57—C52121.9 (3)
C36—C31—C32117.9 (2)N3—C58—C51110.1 (3)
C36—C31—C3122.3 (2)N3—C58—H58124.9
C32—C31—C3119.7 (2)C51—C58—H58124.9
C33—C32—C31121.1 (2)C1—N1—C5119.22 (19)
C33—C32—H32119.4C58—N3—C57109.9 (2)
C31—C32—H32119.4C58—N3—H3125.0
C32—C33—C34119.5 (2)C57—N3—H3125.0
N1—C1—C2—C34.0 (3)Cl1—C34—C35—C36178.62 (19)
C11—C1—C2—C3177.71 (19)C34—C35—C36—C310.1 (4)
C1—C2—C3—C41.8 (3)C32—C31—C36—C350.3 (3)
C1—C2—C3—C31178.89 (19)C3—C31—C36—C35176.9 (2)
C2—C3—C4—C51.7 (3)C3—C4—C41—N2129 (52)
C31—C3—C4—C5177.53 (19)C5—C4—C41—N250 (52)
C2—C3—C4—C41179.1 (2)N1—C5—C51—C58157.8 (2)
C31—C3—C4—C411.7 (3)C4—C5—C51—C5822.7 (4)
C3—C4—C5—N13.4 (3)N1—C5—C51—C5219.0 (3)
C41—C4—C5—N1177.4 (2)C4—C5—C51—C52160.4 (2)
C3—C4—C5—C51177.2 (2)C58—C51—C52—C53178.6 (2)
C41—C4—C5—C512.0 (3)C5—C51—C52—C534.0 (4)
N1—C1—C11—C1217.6 (3)C58—C51—C52—C570.1 (2)
C2—C1—C11—C12160.8 (2)C5—C51—C52—C57177.5 (2)
N1—C1—C11—C16161.9 (2)C57—C52—C53—C540.5 (3)
C2—C1—C11—C1619.7 (3)C51—C52—C53—C54178.9 (2)
C16—C11—C12—C132.8 (4)C52—C53—C54—C550.4 (4)
C1—C11—C12—C13177.7 (2)C53—C54—C55—C561.6 (4)
C11—C12—C13—C140.7 (4)C54—C55—C56—C571.6 (4)
C12—C13—C14—C152.3 (5)C55—C56—C57—N3179.5 (3)
C13—C14—C15—C163.1 (5)C55—C56—C57—C520.7 (4)
C14—C15—C16—C110.9 (5)C53—C52—C57—N3178.6 (2)
C12—C11—C16—C152.0 (4)C51—C52—C57—N30.2 (2)
C1—C11—C16—C15178.5 (3)C53—C52—C57—C560.4 (3)
C2—C3—C31—C36130.6 (2)C51—C52—C57—C56179.2 (2)
C4—C3—C31—C3650.2 (3)C52—C51—C58—N30.3 (3)
C2—C3—C31—C3246.0 (3)C5—C51—C58—N3177.6 (2)
C4—C3—C31—C32133.2 (2)C2—C1—N1—C52.4 (3)
C36—C31—C32—C330.6 (3)C11—C1—N1—C5179.26 (18)
C3—C31—C32—C33177.3 (2)C4—C5—N1—C11.3 (3)
C31—C32—C33—C340.7 (4)C51—C5—N1—C1179.23 (18)
C32—C33—C34—C350.4 (4)C51—C58—N3—C570.4 (3)
C32—C33—C34—Cl1178.91 (19)C56—C57—N3—C58179.3 (3)
C33—C34—C35—C360.1 (4)C52—C57—N3—C580.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C58—H58···N20.932.583.285 (4)133
N3—H3···N2i0.862.203.037 (3)164
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C58—H58···N20.932.583.285 (4)133
N3—H3···N2i0.862.203.037 (3)164.
Symmetry code: (i) x, y, z.
 

Acknowledgements

JS and RV thank the management of the Madura College for their encouragement and support. SP thanks the Department of Science and Technology, New Delhi, for a major research project (SR/S1/OC/-50/2011) and the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o968–o969.  CSD CrossRef IUCr Journals Google Scholar
First citationYao, S. K., Ober, J. C., Ferguson, J. J., Maffrand, J. P., Anderson, H. V., Buja, L. M. & Willerson, J. T. (1994). Am. J. Physiol. pp. H488–H493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds