organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o999-o1000

Crystal structure of 2-(3,4-di­meth­­oxy­phen­yl)-3-hy­dr­oxy-4H-chromen-4-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea, and bDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 August 2014; accepted 8 August 2014; online 13 August 2014)

In the title compound, C17H14O5, the dimeth­oxy-substituted benzene ring is twisted relative to the 4H-chromenon skeleton (r.m.s. deviation = 0.015 Å) by 5.2 (4)°. The C atoms of the meth­oxy groups lie close to the plane of their attached benzene ring [deviations = 0.036 (3) and 0.290 (3)Å for the meta and para substituents, respectively]. An intra­molecular O—H⋯O hydrogen bond closes an S(5) ring. In the cystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(10) loops and C—H⋯O inter­actions connect the dimers into [010] chains.

1. Related literature

For the syntheses and biological properties of flavonols, see: Lee et al. (2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129-132.]); Singh et al. (2014[Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206-230.]); Dias et al. (2013[Dias, T. A., Duarte, C. L., Lima, C. F., Proenca, F. & Pereira-Wilson, C. (2013). Eur. J. Med. Chem. 65, 500-510.]); Yong et al. (2013[Yong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364-370.]). For flavonols in natural products, see: Bendaikha et al. (2014[Bendaikha, S., Gadaut, M., Harakat, D. & Magid, A. (2014). Phytochemistry, 103, 129-136.]); Prescott et al. (2013[Prescott, T. A. K., Kite, G. C., Porter, E. A. & Veitch, N. C. (2013). Phytochemistry, 88, 85-91.]). For related structures, see: Marciniec et al. (2013[Marciniec, K., Maślankiewicz, A., Kusz, J. & Nowak, M. (2013). Acta Cryst. E69, o1357-o1358.]); Serdiuk et al. (2013[Serdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, o895.]); Yu et al. (2006[Yu, Q.-L., Duan, H.-Q. & Gao, W.-Y. (2006). Acta Cryst. E62, o2910-o2911.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H14O5

  • Mr = 298.28

  • Monoclinic, P 21 /n

  • a = 8.2009 (7) Å

  • b = 9.2917 (8) Å

  • c = 18.2684 (15) Å

  • β = 96.322 (2)°

  • V = 1383.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.31 × 0.18 × 0.09 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 9945 measured reflections

  • 3442 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.204

  • S = 1.20

  • 3442 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 2.26 2.710 (3) 113
O3—H3A⋯O1i 0.84 1.96 2.719 (3) 150
C17—H17A⋯O4ii 0.98 2.56 3.283 (3) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Experimental top

Synthesis and crystallization top

Chalcone (1 mmol, 284 mg) was suspended in 15 ml of MeOH / THF (2:1), and 0.5 mL NaOH (30% aq.) was added to produce a red solution, which was cooled to 0°C. To this reaction mixture, was added 1 ml H2O2 (32% aq.) and the solution was stirred for 2h at room temperature. The resulting solution was poured into water (100 ml) and was acidified with 3M HCl. The pale yellow precipitate obtained was filtered and washed with ethanol give the titled compound (57%). Recrystallization in the ethanol solvent gave orange blocks of the title compound (mp: 475-476K)

Refinement top

The H atoms were placed at calculated positions and refined as riding with C–H = 0.95 A [Uiso(H) = 1.2 Ueq(C)].

Results and discussion top

Flavonoids are one of secondary metabolites in plants with C6—C3—C6 skeleton, which include flavones, flavonols, chalcones and isoflavones. Variety of flanonols have been isolated from natural sources and syntheized (Bendaikha et al. 2014; Prescott et al. 2013), because they have shown wide spectrum of biological activities (Lee et al. 2014; Dias et al. 2013). Inspired by the important biological activities of flavonols, our research project has been focused on development of novel flavonols which show broad range of biological activities. Because it has been well established that the presence and position of hy­droxy and meth­oxy substituents plays an important role in determining the biological activity of flavonoids (Singh et al. 2014), the title compound was synthesized and its crystal structure was determined. A starting material, chalcone, (E)-3-(3,4-di­meth­oxy­phenyl)-1-(2-hy­droxy­phenyl)­prop-2-en-1-one, was prepared by the previously reported methods (Yong et al. 2013). Flavonol was obtained by oxidative cyclization of the chalcone with H2O2 in alkaline methanol medium (Lee et al. 2014).

In the title compound, C17H14O5, di­meth­oxy substituted benzene ring is twisted relative to 4H-chromenon skeleton by 5.2 (4)o. The meth­oxy groups at C12 and C13 are tilted from benzene ring by 2.7 (3)o and 8.9 (4)o, respectively. In the crystal, pairs of O—H—O hydrogen bonds form inversion dimer with graph-set notation R22(10) (Marciniec et al. 2013). In addition, each molecule contains intra­molecular O—H—O hydrogen bond with a S(5) motif. Examples of structures of flavonols have been published (Serdiuk et al., 2013; Yu et al., 2006).

Related literature top

For the syntheses and biological properties of flavonols, see: Lee et al. (2014); Singh et al. (2014); Dias et al. (2013); Yong et al. (2013). For flavonols in natural products, see: Bendaikha et al. (2014); Prescott et al. (2013). For related structures, see: Marciniec et al. (2013); Serdiuk et al. (2013); Yu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with intermolecular O—H···O hydrogen bonds shown as dashed lines
2-(3,4-Dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C17H14O5F(000) = 624
Mr = 298.28Dx = 1.432 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5723 reflections
a = 8.2009 (7) Åθ = 2.2–28.3°
b = 9.2917 (8) ŵ = 0.11 mm1
c = 18.2684 (15) ÅT = 200 K
β = 96.322 (2)°Block, orange
V = 1383.6 (2) Å30.31 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2438 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
phi and ω scansh = 108
9945 measured reflectionsk = 1210
3442 independent reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0768P)2 + 1.2451P]
where P = (Fo2 + 2Fc2)/3
3442 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C17H14O5V = 1383.6 (2) Å3
Mr = 298.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2009 (7) ŵ = 0.11 mm1
b = 9.2917 (8) ÅT = 200 K
c = 18.2684 (15) Å0.31 × 0.18 × 0.09 mm
β = 96.322 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2438 reflections with I > 2σ(I)
9945 measured reflectionsRint = 0.033
3442 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.20Δρmax = 0.41 e Å3
3442 reflectionsΔρmin = 0.56 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4617 (3)0.3933 (2)0.06661 (11)0.0482 (5)
C10.5311 (3)0.2734 (3)0.06091 (14)0.0359 (5)
C20.4995 (3)0.1608 (3)0.11530 (13)0.0331 (5)
C30.3917 (3)0.1776 (3)0.17952 (14)0.0376 (6)
H30.33730.26690.18930.045*
C40.3639 (3)0.0662 (3)0.22855 (14)0.0418 (6)
H40.29050.07870.27210.050*
C50.4433 (3)0.0657 (3)0.21466 (14)0.0415 (6)
H50.42360.14260.24880.050*
C60.5503 (3)0.0846 (3)0.15152 (14)0.0366 (5)
H60.60380.17430.14170.044*
C70.5784 (3)0.0295 (3)0.10267 (12)0.0314 (5)
O20.6861 (2)0.00521 (17)0.04197 (9)0.0324 (4)
C80.7237 (3)0.1100 (2)0.00988 (12)0.0294 (5)
C90.6471 (3)0.2409 (3)0.00173 (13)0.0328 (5)
O30.6804 (2)0.34504 (19)0.05317 (11)0.0446 (5)
H3A0.61950.41640.04250.067*
C100.8434 (3)0.0586 (2)0.06893 (12)0.0299 (5)
C110.8933 (3)0.0875 (2)0.06779 (12)0.0302 (5)
H110.85170.14750.02800.036*
C121.0008 (3)0.1431 (2)0.12337 (12)0.0302 (5)
C131.0641 (3)0.0565 (3)0.18262 (12)0.0309 (5)
C141.0198 (3)0.0875 (3)0.18304 (14)0.0359 (5)
H141.06460.14790.22210.043*
C150.9108 (3)0.1445 (3)0.12696 (14)0.0348 (5)
H150.88180.24340.12820.042*
O41.0533 (2)0.28329 (18)0.12628 (9)0.0386 (4)
C160.9847 (4)0.3755 (3)0.06895 (16)0.0467 (7)
H16A0.86520.37850.06880.070*
H16B1.02960.47260.07700.070*
H16C1.01190.33890.02150.070*
O51.1652 (2)0.12376 (19)0.23612 (9)0.0387 (4)
C171.2109 (4)0.0443 (3)0.30216 (14)0.0456 (7)
H17A1.26670.04450.29030.068*
H17B1.28490.10260.33600.068*
H17C1.11240.02040.32560.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0552 (12)0.0343 (10)0.0526 (11)0.0138 (8)0.0047 (9)0.0018 (8)
C10.0362 (12)0.0309 (12)0.0411 (13)0.0041 (10)0.0072 (10)0.0040 (10)
C20.0320 (12)0.0341 (12)0.0337 (11)0.0015 (9)0.0064 (9)0.0060 (9)
C30.0325 (12)0.0419 (13)0.0386 (13)0.0033 (10)0.0049 (10)0.0057 (10)
C40.0348 (13)0.0535 (16)0.0364 (12)0.0016 (11)0.0010 (10)0.0084 (11)
C50.0385 (13)0.0535 (16)0.0310 (12)0.0045 (12)0.0021 (10)0.0052 (11)
C60.0367 (13)0.0341 (12)0.0387 (12)0.0027 (10)0.0032 (10)0.0021 (10)
C70.0275 (11)0.0383 (12)0.0284 (10)0.0015 (9)0.0024 (8)0.0025 (9)
O20.0334 (9)0.0288 (8)0.0338 (8)0.0034 (6)0.0010 (7)0.0029 (6)
C80.0288 (11)0.0274 (11)0.0323 (11)0.0008 (8)0.0043 (9)0.0005 (8)
C90.0352 (12)0.0279 (11)0.0355 (12)0.0019 (9)0.0047 (9)0.0007 (9)
O30.0531 (12)0.0278 (9)0.0499 (11)0.0098 (8)0.0076 (9)0.0076 (8)
C100.0287 (11)0.0295 (11)0.0319 (11)0.0007 (9)0.0056 (9)0.0028 (9)
C110.0295 (11)0.0306 (11)0.0305 (11)0.0011 (9)0.0033 (9)0.0020 (9)
C120.0307 (11)0.0290 (11)0.0304 (11)0.0017 (9)0.0019 (9)0.0008 (9)
C130.0289 (11)0.0325 (12)0.0312 (11)0.0004 (9)0.0025 (9)0.0036 (9)
C140.0362 (12)0.0346 (12)0.0366 (12)0.0012 (10)0.0020 (10)0.0068 (10)
C150.0348 (12)0.0293 (11)0.0392 (12)0.0016 (9)0.0010 (10)0.0033 (9)
O40.0478 (10)0.0286 (9)0.0364 (9)0.0067 (7)0.0086 (7)0.0043 (7)
C160.0587 (17)0.0295 (12)0.0469 (15)0.0069 (12)0.0167 (13)0.0093 (11)
O50.0425 (10)0.0384 (9)0.0321 (8)0.0018 (8)0.0089 (7)0.0028 (7)
C170.0534 (16)0.0455 (15)0.0351 (13)0.0058 (12)0.0086 (11)0.0064 (11)
Geometric parameters (Å, º) top
O1—C11.250 (3)C10—C151.392 (3)
C1—C91.437 (3)C10—C111.418 (3)
C1—C21.447 (4)C11—C121.370 (3)
C2—C71.388 (3)C11—H110.9500
C2—C31.398 (3)C12—O41.371 (3)
C3—C41.371 (4)C12—C131.401 (3)
C3—H30.9500C13—O51.362 (3)
C4—C51.397 (4)C13—C141.387 (3)
C4—H40.9500C14—C151.388 (3)
C5—C61.381 (3)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.388 (3)O4—C161.420 (3)
C6—H60.9500C16—H16A0.9800
C7—O21.359 (3)C16—H16B0.9800
O2—C81.370 (3)C16—H16C0.9800
C8—C91.369 (3)O5—C171.429 (3)
C8—C101.457 (3)C17—H17A0.9800
C9—O31.356 (3)C17—H17B0.9800
O3—H3A0.8400C17—H17C0.9800
O1—C1—C9120.6 (2)C11—C10—C8118.4 (2)
O1—C1—C2122.8 (2)C12—C11—C10120.9 (2)
C9—C1—C2116.6 (2)C12—C11—H11119.6
C7—C2—C3118.5 (2)C10—C11—H11119.6
C7—C2—C1118.5 (2)C11—C12—O4124.1 (2)
C3—C2—C1123.0 (2)C11—C12—C13120.6 (2)
C4—C3—C2120.5 (2)O4—C12—C13115.3 (2)
C4—C3—H3119.7O5—C13—C14125.3 (2)
C2—C3—H3119.7O5—C13—C12115.8 (2)
C3—C4—C5120.2 (2)C14—C13—C12118.9 (2)
C3—C4—H4119.9C13—C14—C15120.8 (2)
C5—C4—H4119.9C13—C14—H14119.6
C6—C5—C4120.2 (3)C15—C14—H14119.6
C6—C5—H5119.9C14—C15—C10120.9 (2)
C4—C5—H5119.9C14—C15—H15119.6
C5—C6—C7119.0 (2)C10—C15—H15119.6
C5—C6—H6120.5C12—O4—C16116.58 (18)
C7—C6—H6120.5O4—C16—H16A109.5
O2—C7—C6116.4 (2)O4—C16—H16B109.5
O2—C7—C2122.0 (2)H16A—C16—H16B109.5
C6—C7—C2121.5 (2)O4—C16—H16C109.5
C7—O2—C8121.53 (18)H16A—C16—H16C109.5
C9—C8—O2119.4 (2)H16B—C16—H16C109.5
C9—C8—C10129.5 (2)C13—O5—C17116.8 (2)
O2—C8—C10111.13 (19)O5—C17—H17A109.5
O3—C9—C8120.2 (2)O5—C17—H17B109.5
O3—C9—C1117.8 (2)H17A—C17—H17B109.5
C8—C9—C1121.9 (2)O5—C17—H17C109.5
C9—O3—H3A109.5H17A—C17—H17C109.5
C15—C10—C11117.9 (2)H17B—C17—H17C109.5
C15—C10—C8123.7 (2)
O1—C1—C2—C7177.7 (2)C2—C1—C9—O3179.3 (2)
C9—C1—C2—C71.8 (3)O1—C1—C9—C8179.3 (2)
O1—C1—C2—C31.5 (4)C2—C1—C9—C80.2 (4)
C9—C1—C2—C3179.1 (2)C9—C8—C10—C155.2 (4)
C7—C2—C3—C40.5 (4)O2—C8—C10—C15176.3 (2)
C1—C2—C3—C4178.7 (2)C9—C8—C10—C11174.2 (2)
C2—C3—C4—C50.0 (4)O2—C8—C10—C114.2 (3)
C3—C4—C5—C60.0 (4)C15—C10—C11—C122.0 (3)
C4—C5—C6—C70.5 (4)C8—C10—C11—C12177.5 (2)
C5—C6—C7—O2179.3 (2)C10—C11—C12—O4179.4 (2)
C5—C6—C7—C21.0 (4)C10—C11—C12—C130.1 (3)
C3—C2—C7—O2179.3 (2)C11—C12—C13—O5177.7 (2)
C1—C2—C7—O21.5 (3)O4—C12—C13—O51.8 (3)
C3—C2—C7—C61.0 (4)C11—C12—C13—C141.8 (3)
C1—C2—C7—C6178.2 (2)O4—C12—C13—C14178.6 (2)
C6—C7—O2—C8179.8 (2)O5—C13—C14—C15177.6 (2)
C2—C7—O2—C80.5 (3)C12—C13—C14—C151.9 (4)
C7—O2—C8—C92.1 (3)C13—C14—C15—C100.1 (4)
C7—O2—C8—C10179.22 (19)C11—C10—C15—C141.9 (4)
O2—C8—C9—O3178.8 (2)C8—C10—C15—C14177.6 (2)
C10—C8—C9—O30.5 (4)C11—C12—O4—C162.7 (4)
O2—C8—C9—C11.8 (4)C13—C12—O4—C16176.9 (2)
C10—C8—C9—C1179.9 (2)C14—C13—O5—C178.9 (3)
O1—C1—C9—O31.3 (4)C12—C13—O5—C17170.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.842.262.710 (3)113
O3—H3A···O1i0.841.962.719 (3)150
C17—H17A···O4ii0.982.563.283 (3)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.842.262.710 (3)113
O3—H3A···O1i0.841.962.719 (3)150
C17—H17A···O4ii0.982.563.283 (3)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+5/2, y+1/2, z+1/2.
 

References

First citationBendaikha, S., Gadaut, M., Harakat, D. & Magid, A. (2014). Phytochemistry, 103, 129–136.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, T. A., Duarte, C. L., Lima, C. F., Proenca, F. & Pereira-Wilson, C. (2013). Eur. J. Med. Chem. 65, 500–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129–132.  Web of Science CrossRef CAS Google Scholar
First citationMarciniec, K., Maślankiewicz, A., Kusz, J. & Nowak, M. (2013). Acta Cryst. E69, o1357–o1358.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrescott, T. A. K., Kite, G. C., Porter, E. A. & Veitch, N. C. (2013). Phytochemistry, 88, 85–91.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSerdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, o895.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–230.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYong, Y., Ahn, S., Hwang, D., Yoon, H., Jo, G., Kim, Y. H., Kim, S. H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 364–370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYu, Q.-L., Duan, H.-Q. & Gao, W.-Y. (2006). Acta Cryst. E62, o2910–o2911.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o999-o1000
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds