research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(prop-2-yn­yl­oxy)-2,2,6,6-tetra­methyl­piperidin-1-ox­yl

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 August 2014; accepted 5 August 2014; online 9 August 2014)

The title compound, C12H20NO2, was synthesized from 4-hy­droxy-2,2,6,6-tetra­methyl­piperidin-1-oxyl (hy­droxy-TEMPO) and propargyl bromide. The six-membered ring adopts a flattened chair conformation and carries a propyn­yloxy substituent in an equatorial orientation at the 4-position. The N—O bond length of the piperidin-1-oxyl unit is 1.289 (3) Å. In the crystal, C—H⋯O hydrogen bonds combine with unusual C—H⋯π inter­actions involving the alkyne unit as acceptor to generate a three-dimensional network.

1. Chemical context

TEMPO, 2,2,6,6-tetra­methyl­piperidin-1-oxyl, and its derivatives have attracted significant inter­est in recent years as functional organic radicals with considerable chemical stability (Soegiarto et al., 2011[Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204-2219.]). They are known to exhibit both ferromagnetism and anti­ferromagnetism at low temperatures (Togashi et al., 1996[Togashi, K., Imachi, R., Tomioka, K., Tsuboi, H., Ishida, T., Nogami, T., Takeda, N. & Ishikawa, M. (1996). Bull. Chem. Soc. Jpn, 69, 2821-2830.]; Ishida et al., 1995[Ishida, T., Tomioka, K., Nogami, T., Yoshikawa, H., Yasui, M., Iwasaki, F., Takeda, N. & Ishikawa, M. (1995). Chem. Phys. Lett. 247, 7-12.]), and the effect of inter­molecular contacts on their magnetic properties has been examined (Iwasaki et al., 1999a[Iwasaki, F., Yoshikawa, J. H., Yamamoto, H., Kan-nari, E., Takada, K., Yasui, M., Ishida, T. & Nogami, T. (1999a). Acta Cryst. B55, 231-245.],b[Iwasaki, F., Yoshikawa, J. H., Yamamoto, H., Takada, K., Kan-nari, E., Yasui, M., Ishida, T. & Nogami, T. (1999b). Acta Cryst. B55, 1057-1067.]). TEMPO and its derivatives have been utilized in applications as diverse as catalysis in organic synthesis (Zhao et al., 2005[Zhao, M. M., Li, J., Mano, E., Song, Z. J. & Tschaen, D. M. (2005). Org. Synth. 81, 195-203.]), pulsed electron–electron double-resonance (PELDOR) spectroscopy (Bode et al., 2007[Bode, B. E., Margraf, D., Plackmeyer, J., Dumer, G., Prisner, T. F. & Schiemann, O. (2007). J. Am. Chem. Soc. 129, 6736-6745.]), and use as qubits (quantum bits) in quantum computing (Nakazawa et al., 2012[Nakazawa, S., Nishida, S., Ise, T., Yoshino, T., Mori, N., Rahimi, R. D., Sato, K., Morita, Y., Toyota, K., Shiomi, D., Kitagawa, M., Hara, H., Carl, P., Hofer, P. & Takui, T. (2012). Angew. Chem. Int. Ed. 51, 9860-9864.]).

[Scheme 1]

Our inter­est in TEMPO derivatives is as reversible redox-active subunits in polymer-gel actuators (Goswami et al., 2013[Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415-3420.]). In particular, the alkyne group present in the title compound, (1), allows us to utilize the versatile CuAAC `click' cyclo­addition with organic azides (Hein & Fokin, 2010[Hein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302—1315.]; Lewis et al., 2013[Lewis, J. E. M., McAdam, C. J., Gardiner, M. G. & Crowley, J. D. (2013). Chem. Commun. 49, 3398-3400.]) as a means to attach the TEMPO unit to the gel skeleton.

2. Structural commentary

The structure of (1) and its atom numbering are shown in Fig. 1[link]. The mol­ecule comprises a standard TEMPO unit with a propyn­yloxy substituent at the 4-position. The N1/C2–C6 ring adopts a flattened chair conformation with the C4 atom 0.706 (4) Å from the best fit plane through the remaining four C atoms, while N1 lies only 0.384 (4) Å from the plane in the opposite direction. The propynyl C7–C9 unit points away from this plane in the same direction as C4, with C7—C8—C9 = 178.6 (3)°. The N—O bond is 1.289 (3) Å long, which compares favorably with the average value of 1.285 (18) Å for other TEMPO structures (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Figure 1]
Figure 1
The structure of (1), showing the atom numbering and with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of (1), C9—H9⋯O1 hydrogen bonds link mol­ecules into C(9) chains along b (Table 1[link]). Additional C61—H61A⋯O1 contacts form R32(16) rings, resulting in double chains of mol­ecules along b (Fig. 2[link]). In an almost orthogonal direction, C7—H7B⋯O2 hydrogen bonds form C(3) chains along a. An inter­esting feature of these latter contacts is the support provided by C5—H5BCg inter­actions (Cg is the mid-point of the C8—C9 bond) involving the alkyne unit (Fig. 3[link]). Such contacts are often overlooked, but they have been reported previously for both terminal and non-terminal alkyne systems (Banerjee et al., 2006[Banerjee, R., Mondal, R., Howard, J. A. K. & Desiraju, G. R. (2006). Cryst. Growth Des. 6, 999-1009.]; Thakur et al., 2010[Thakur, A., Adarsh, N. A., Chakraborty, A., Devi, M. & Ghosh, S. (2010). J. Organomet. Chem. 695, 1059-1064.]; McAdam et al., 2012[McAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R., Moratti, S. C. & Simpson, J. (2012). CrystEngComm, 14, 4369-4383.]). Overall, these contacts generate a three-dimensional network with mol­ecules stacked in inter­connected columns along the b axis (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the mid-point of the C8–C9 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.28 3.205 (4) 163
C7—H7B⋯O2ii 0.99 2.52 3.298 (4) 135
C61—H61A⋯O1iii 0.98 2.56 3.481 (4) 157
C5—H5BCgiv 0.99 2.93 3.885 (4) 156
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x-1, y+{\script{5\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Double chains formed from mol­ecules of (1) along b. In this and subsequent Figures, C—H⋯O hydrogen bonds are drawn as dashed lines and H atoms bound to atoms not involved in hydrogen bonding are not shown.
[Figure 3]
Figure 3
Zigzag chains formed along a from C—H⋯O and C—H⋯π (green dotted lines) contacts. The mid-point of the C8=C9 triple bond is shown as a red sphere.
[Figure 4]
Figure 4
The overall packing for (1), viewed along the b axis.

4. Database survey

The Cambridge Structural Database (CSD; Version 5.35, November 2013 with 2 updates; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals a total of 175 structures of TEMPO and its derivatives. However, structures of alk­oxy-TEMPO derivatives are rare with only a single example, albeit in two separate papers in which Polovyanenko et al. (2008[Polovyanenko, D. N., Bagryanskaya, E. G., Schnegg, A., Mobius, K., Coleman, A. W., Ananchenko, G. S., Udachin, K. A. & Ripmeester, J. A. (2008). Phys. Chem. Chem. Phys. 10, 5299-5307.]) and Soegiarto et al. (2011[Soegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204-2219.]) report the structure of 4-(meth­oxy)-TEMPO, 4-(meth­oxy)-2,2,6,6-tetra­methyl­piperidin-1-oxyl. The first paper examines the TEMPO derivative as an inclusion complex of p-hexa­noyl calix[4]arene (C6OH), and investigates the magnetism and orientation dependent motion of the encapsulated radical. In the second, the mol­ecule is included in the cavities of two porous frameworks derived from guanidinium cations and two organodi­sulfonate anions; the magnetic behaviour of the radical guest is investigated. Arylo­yloxy-TEMPO derivatives are more abundant with 19 entries in the CSD (see, for example, Pang et al., 2013[Pang, X., Wang, H., Zhao, X. R. & Wei Jin, W. J. (2013). Dalton Trans., 42, 8788-8795.]; Nakazawa et al., 2012[Nakazawa, S., Nishida, S., Ise, T., Yoshino, T., Mori, N., Rahimi, R. D., Sato, K., Morita, Y., Toyota, K., Shiomi, D., Kitagawa, M., Hara, H., Carl, P., Hofer, P. & Takui, T. (2012). Angew. Chem. Int. Ed. 51, 9860-9864.]; Akutsu et al., 2005[Akutsu, H., Masaki, K., Mori, K., Yamada, J. & Nakatsuji, S. (2005). Polyhedron, 24, 2126-2132.]). Again, the focus is very much on the magnetic properties of the materials.

5. Synthesis and crystallization

Synthesis and characterization (IR and mass spectroscopy) are as previously described (Gheorghe et al., 2006[Gheorghe, A., Matsuno, A. & Reiser, O. (2006). Adv. Synth. Catal. 348, 1016—1020.]; Kulis et al., 2009[Kulis, J., Bell, C. A., Micallef, A. S., Jia, Z. & Monteiro, M. J. (2009). Macromolecules, 42, 8218-8227.]). Colourless blocks were obtained from diethyl ether solution at room temperature. Analysis calculated for C12H20NO2: C 68.54, H 9.59, N 6.66%; found: C 68.57, H 9.66, N 6.68%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. With no heavy atom in the non-centrosymmetric structure, the absolute structure could not be reliably determined. Friedel opposites were not, however, merged. All H atoms were refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the terminal alkyne H atom. Anisiotropic refinement of the non-H atoms was constrained using the ISOR command in SHELXL to prevent atoms becoming non-positive definite. 10 reflections with Fo >> Fc were omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C12H20NO2
Mr 210.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.94506 (13), 10.17919 (16), 14.8052 (3)
V3) 1197.36 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.18 × 0.15 × 0.08
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.522, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6622, 2307, 2203
Rint 0.046
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.15
No. of reflections 2307
No. of parameters 140
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.28
Absolute structure Flack x determined using 858 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter 0.0 (3)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR2011 (Burla et al., 2012[Camalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351-356.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

TEMPO, 2,2,6,6-tetra­methyl­piperidin-1-oxyl, and its derivatives have attracted significant inter­est in recent years as functional organic radicals with considerable chemical stability (Soegiarto et al., 2011). They are known to exhibit both ferromagnetism and anti­ferromagnetism at low temperatures (Togashi et al., 1996; Ishida et al., 1995), and the effect of inter­molecular contacts on their magnetic properties has been examined (Iwasaki et al., 1999a,b). TEMPO and its derivatives have been utilized in applications as diverse as catalysis in organic synthesis (Zhao et al., 2005), pulsed electron–electron double-resonance (PELDOR) spectroscopy (Bode et al., 2007), and use as qubits (quantum bits) in quantum computing (Nakazawa et al., 2012).

Our inter­est in TEMPO derivatives is as reversible redox-active subunits in polymer-gel actuators (Goswami et al., 2013). In particular, the alkyne group present in the title compound, (1), allows us to utilize the versatile CuAAC `click' cyclo­addition with organic azides (Hein & Fokin, 2010; Lewis et al., 2013) as a means to attach the TEMPO unit to the gel skeleton.

Structural commentary top

The structure of (1) and its atom numbering are shown in Fig. 1. The molecule comprises a standard TEMPO unit with a propynyl­oxy substituent at the 4-position. The N1/C2–C6 ring adopts a flattened chair conformation with the C4 atom 0.706 (4) Å from the best fit plane through the remaining four C atoms, while N1 lies only 0.384 (4) Å from the plane in the opposite direction. The propynyl C7–C9 unit points away from this plane in the same direction as C4, with C7—C8—C9 = 178.6 (3)°. The N—O bond is 1.289 (3) Å long, which compares favorably with the average value of 1.285 (18) Å for other TEMPO structures (Macrae et al., 2008).

Supra­molecular features top

In the crystal structure of (1), C9—H9···O1 hydrogen bonds link molecules into C(9) chains along b (Table 1). Additional C61—H61A···O1 contacts form R32(16) rings, resulting in double chains of molecules along b (Fig. 2). In an almost orthogonal direction, C7—H7B···O2 hydrogen bonds form C(3) chains along a. An inter­esting feature of these latter contacts is the support provided by C5—H5B···Cg inter­actions (Cg is the mid-point of the C8—C9 bond) involving the alkyne unit (Fig. 3). Such contacts are often overlooked, but they have been reported previously for both terminal and non-terminal alkyne systems (Banerjee et al., 2006; Thakur et al., 2010; McAdam et al., 2012). Overall, these contacts generate a three-dimensional network with molecules stacked in inter­connected columns along the b axis (Fig. 4).

Database survey top

The Cambridge Structural Database (CSD; Version 5.35, November 2013 with 2 updates; Allen, 2002) reveals a total of 175 structures of TEMPO and its derivatives. However, structures of alk­oxy-TEMPO derivatives are rare with only a single example, albeit in two separate papers in which Polovyanenko et al. (2008) and Soegiarto et al. (2011) report the structure of 4-(meth­oxy)-TEMPO, 4-(meth­oxy)-2,2,6,6-tetra­methyl­piperidin-1-oxyl. The first paper examines the TEMPO derivative as an inclusion complex of p-hexanoyl calix[4]arene (C6OH), and investigates the magnetism and orientation dependent motion of the encapsulated radical. In the second, the molecule is included in the cavities of two porous frameworks derived from guanidinium cations and two organodi­sulfonate anions; the magnetic behaviour of the radical guest is investigated. Aryl­oyl­oxy-TEMPO derivatives are more abundant with 19 entries in the CSD (see, for example, Pang et al., 2013; Nakazawa et al., 2012; Akutsu et al., 2005). Again, the focus is very much on the magnetic properties of the materials.

Synthesis and crystallization top

Synthesis and characterisation (IR and mass spectroscopy) are as previously described (Gheorghe et al., 2006; Kulis et al., 2009). Colourless blocks were obtained from di­ethyl ether solution at room temperature. Analysis calculated for C12H20NO2: C 68.54, H 9.59, N 6.66%; found: C 68.57, H 9.66, N 6.68%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. With no heavy atom in the non-centrosymmetric structure, the absolute structure could not be reliably determined. Friedel opposites were not, however, merged. All H atoms were refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the terminal alkyne H atom. Anisiotropic refinement of the non-H atoms was constrained using the ISOR command in SHELXL to prevent atoms becoming non-positive definite. 10 reflections with Fo >> Fc were omitted from the final refinement cycles.

Related literature top

For related literature, see: Akutsu et al. (2005); Allen (2002); Banerjee et al. (2006); Bode et al. (2007); Gheorghe et al. (2006); Goswami et al. (2013); Hein & Fokin (2010); Ishida et al. (1995); Iwasaki et al. (1999a, 1999b); Kulis et al. (2009); Lewis et al. (2013); Macrae et al. (2008); McAdam et al. (2012); Nakazawa et al. (2012); Pang et al. (2013); Polovyanenko et al. (2008); Soegiarto et al. (2011); Thakur et al. (2010); Togashi et al. (1996); Zhao et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Figures top
[Figure 1] Fig. 1. The structure of (1), showing the atom numbering and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Double chains formed from molecules of (1) along b. In this and subsequent Figures, C—H···O hydrogen bonds are drawn as dashed lines and H atoms bound to atoms not involved in hydrogen bonding are not shown.
[Figure 3] Fig. 3. Zigzag chains formed along a from C—H···O and C—H···π (green dotted lines) contacts. The mid-point of the C8C9 triple bond is shown as a red sphere.
[Figure 4] Fig. 4. The overall packing for (1), viewed along the b axis.
4-(Prop-2-ynyloxy)-2,2,6,6-tetramethylpiperidin-1-oxyl top
Crystal data top
C12H20NO2Dx = 1.167 Mg m3
Mr = 210.29Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 4862 reflections
a = 7.94506 (13) Åθ = 5.3–74.2°
b = 10.17919 (16) ŵ = 0.63 mm1
c = 14.8052 (3) ÅT = 100 K
V = 1197.36 (4) Å3Block, colourless
Z = 40.18 × 0.15 × 0.08 mm
F(000) = 460
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2307 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2203 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 5.1725 pixels mm-1θmax = 74.3°, θmin = 5.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1212
Tmin = 0.522, Tmax = 1.000l = 1813
6622 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0376P)2 + 1.029P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.22 e Å3
2307 reflectionsΔρmin = 0.28 e Å3
140 parametersAbsolute structure: Flack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
90 restraintsAbsolute structure parameter: 0.0 (3)
Crystal data top
C12H20NO2V = 1197.36 (4) Å3
Mr = 210.29Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.94506 (13) ŵ = 0.63 mm1
b = 10.17919 (16) ÅT = 100 K
c = 14.8052 (3) Å0.18 × 0.15 × 0.08 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2203 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 1.000Rint = 0.046
6622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.22 e Å3
S = 1.15Δρmin = 0.28 e Å3
2307 reflectionsAbsolute structure: Flack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
140 parametersAbsolute structure parameter: 0.0 (3)
90 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3936 (3)0.73046 (19)0.71556 (15)0.0174 (5)
N10.3444 (3)0.8315 (2)0.67027 (16)0.0107 (5)
C20.2036 (4)0.9093 (3)0.71116 (19)0.0116 (6)
C210.2698 (4)0.9827 (3)0.7945 (2)0.0169 (6)
H21A0.33100.92140.83350.025*
H21B0.17501.02050.82800.025*
H21C0.34571.05330.77530.025*
C220.0670 (4)0.8118 (3)0.7398 (2)0.0179 (7)
H22A0.03010.76110.68720.027*
H22B0.02890.85990.76510.027*
H22C0.11250.75200.78560.027*
C30.1325 (3)1.0046 (3)0.6408 (2)0.0119 (6)
H3A0.06540.95430.59640.014*
H3B0.05581.06710.67140.014*
C40.2663 (4)1.0812 (3)0.59126 (19)0.0099 (6)
H40.33311.13640.63410.012*
C50.3796 (4)0.9843 (3)0.54137 (19)0.0112 (6)
H5A0.46641.03420.50780.013*
H5B0.31100.93570.49660.013*
C60.4674 (4)0.8850 (3)0.6036 (2)0.0114 (6)
C610.6167 (4)0.9461 (3)0.6539 (2)0.0152 (6)
H61A0.58031.02700.68400.023*
H61B0.70650.96650.61080.023*
H61C0.65870.88390.69910.023*
C620.5300 (4)0.7698 (3)0.5464 (2)0.0168 (6)
H62A0.59340.70870.58460.025*
H62B0.60310.80280.49820.025*
H62C0.43350.72400.51970.025*
O20.1772 (3)1.16202 (19)0.52724 (14)0.0140 (5)
C70.2733 (4)1.2682 (3)0.4916 (2)0.0149 (6)
H7A0.22011.29920.43500.018*
H7B0.38771.23620.47650.018*
C80.2872 (4)1.3793 (3)0.5551 (2)0.0160 (6)
C90.2975 (4)1.4705 (3)0.6048 (2)0.0198 (7)
H90.30581.54350.64450.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (11)0.0083 (9)0.0159 (11)0.0025 (9)0.0015 (10)0.0060 (8)
N10.0172 (11)0.0066 (10)0.0085 (10)0.0001 (9)0.0007 (10)0.0011 (8)
C20.0163 (13)0.0110 (12)0.0075 (12)0.0005 (11)0.0037 (12)0.0002 (10)
C210.0245 (15)0.0169 (14)0.0092 (14)0.0002 (12)0.0002 (13)0.0026 (11)
C220.0208 (15)0.0190 (15)0.0140 (15)0.0056 (12)0.0028 (13)0.0044 (12)
C30.0145 (12)0.0110 (12)0.0101 (13)0.0020 (10)0.0011 (11)0.0008 (10)
C40.0148 (13)0.0087 (12)0.0061 (12)0.0005 (10)0.0000 (11)0.0012 (9)
C50.0160 (12)0.0092 (12)0.0084 (13)0.0001 (10)0.0009 (11)0.0009 (10)
C60.0161 (12)0.0090 (12)0.0090 (13)0.0008 (10)0.0008 (11)0.0015 (10)
C610.0165 (13)0.0132 (13)0.0160 (15)0.0004 (11)0.0003 (13)0.0025 (11)
C620.0229 (14)0.0122 (13)0.0153 (16)0.0036 (11)0.0048 (13)0.0019 (11)
O20.0178 (10)0.0102 (9)0.0140 (10)0.0000 (8)0.0032 (9)0.0041 (7)
C70.0209 (14)0.0105 (12)0.0133 (14)0.0004 (11)0.0017 (12)0.0040 (10)
C80.0178 (13)0.0139 (13)0.0161 (14)0.0007 (11)0.0008 (12)0.0057 (11)
C90.0275 (15)0.0155 (15)0.0164 (15)0.0025 (12)0.0026 (14)0.0022 (12)
Geometric parameters (Å, º) top
O1—N11.289 (3)C5—C61.535 (4)
N1—C61.492 (4)C5—H5A0.9900
N1—C21.498 (4)C5—H5B0.9900
C2—C31.531 (4)C6—C621.530 (4)
C2—C221.531 (4)C6—C611.532 (4)
C2—C211.536 (4)C61—H61A0.9800
C21—H21A0.9800C61—H61B0.9800
C21—H21B0.9800C61—H61C0.9800
C21—H21C0.9800C62—H62A0.9800
C22—H22A0.9800C62—H62B0.9800
C22—H22B0.9800C62—H62C0.9800
C22—H22C0.9800O2—C71.424 (3)
C3—C41.509 (4)C7—C81.475 (4)
C3—H3A0.9900C7—H7A0.9900
C3—H3B0.9900C7—H7B0.9900
C4—O21.441 (3)C8—C91.187 (5)
C4—C51.526 (4)C9—H90.9500
C4—H41.0000
O1—N1—C6115.9 (2)C4—C5—C6113.8 (2)
O1—N1—C2116.0 (2)C4—C5—H5A108.8
C6—N1—C2124.3 (2)C6—C5—H5A108.8
N1—C2—C3109.6 (2)C4—C5—H5B108.8
N1—C2—C22107.3 (2)C6—C5—H5B108.8
C3—C2—C22109.7 (2)H5A—C5—H5B107.7
N1—C2—C21109.1 (2)N1—C6—C62107.4 (2)
C3—C2—C21111.4 (2)N1—C6—C61109.5 (2)
C22—C2—C21109.6 (2)C62—C6—C61109.2 (2)
C2—C21—H21A109.5N1—C6—C5109.9 (2)
C2—C21—H21B109.5C62—C6—C5108.7 (2)
H21A—C21—H21B109.5C61—C6—C5112.1 (2)
C2—C21—H21C109.5C6—C61—H61A109.5
H21A—C21—H21C109.5C6—C61—H61B109.5
H21B—C21—H21C109.5H61A—C61—H61B109.5
C2—C22—H22A109.5C6—C61—H61C109.5
C2—C22—H22B109.5H61A—C61—H61C109.5
H22A—C22—H22B109.5H61B—C61—H61C109.5
C2—C22—H22C109.5C6—C62—H62A109.5
H22A—C22—H22C109.5C6—C62—H62B109.5
H22B—C22—H22C109.5H62A—C62—H62B109.5
C4—C3—C2113.5 (2)C6—C62—H62C109.5
C4—C3—H3A108.9H62A—C62—H62C109.5
C2—C3—H3A108.9H62B—C62—H62C109.5
C4—C3—H3B108.9C7—O2—C4114.4 (2)
C2—C3—H3B108.9O2—C7—C8112.7 (2)
H3A—C3—H3B107.7O2—C7—H7A109.1
O2—C4—C3105.6 (2)C8—C7—H7A109.1
O2—C4—C5109.9 (2)O2—C7—H7B109.1
C3—C4—C5108.5 (2)C8—C7—H7B109.1
O2—C4—H4110.9H7A—C7—H7B107.8
C3—C4—H4110.9C9—C8—C7178.6 (3)
C5—C4—H4110.9C8—C9—H9180.0
O1—N1—C2—C3166.8 (2)O1—N1—C6—C6249.9 (3)
C6—N1—C2—C336.2 (4)C2—N1—C6—C62153.1 (3)
O1—N1—C2—C2247.7 (3)O1—N1—C6—C6168.6 (3)
C6—N1—C2—C22155.3 (3)C2—N1—C6—C6188.4 (3)
O1—N1—C2—C2171.0 (3)O1—N1—C6—C5167.9 (2)
C6—N1—C2—C2186.0 (3)C2—N1—C6—C535.1 (4)
N1—C2—C3—C447.6 (3)C4—C5—C6—N145.1 (3)
C22—C2—C3—C4165.2 (2)C4—C5—C6—C62162.3 (2)
C21—C2—C3—C473.2 (3)C4—C5—C6—C6176.9 (3)
C2—C3—C4—O2178.6 (2)C3—C4—O2—C7163.0 (2)
C2—C3—C4—C560.8 (3)C5—C4—O2—C780.2 (3)
O2—C4—C5—C6174.6 (2)C4—O2—C7—C877.8 (3)
C3—C4—C5—C659.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the mid-point of the C8–C9 bond.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.283.205 (4)163
C7—H7B···O2ii0.992.523.298 (4)135
C61—H61A···O1iii0.982.563.481 (4)157
C5—H5B···Cgiv0.992.933.885 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x1, y+5/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the mid-point of the C8–C9 bond.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.283.205 (4)163
C7—H7B···O2ii0.992.523.298 (4)135
C61—H61A···O1iii0.982.563.481 (4)157
C5—H5B···Cgiv0.992.933.885 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x1, y+5/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H20NO2
Mr210.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.94506 (13), 10.17919 (16), 14.8052 (3)
V3)1197.36 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.18 × 0.15 × 0.08
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.522, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6622, 2307, 2203
Rint0.046
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.15
No. of reflections2307
No. of parameters140
No. of restraints90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28
Absolute structureFlack x determined using 858 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.0 (3)

Computer programs: CrysAlis PRO (Agilent, 2013), SIR2011 (Burla et al., 2012), SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkutsu, H., Masaki, K., Mori, K., Yamada, J. & Nakatsuji, S. (2005). Polyhedron, 24, 2126–2132.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanerjee, R., Mondal, R., Howard, J. A. K. & Desiraju, G. R. (2006). Cryst. Growth Des. 6, 999–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationBode, B. E., Margraf, D., Plackmeyer, J., Dumer, G., Prisner, T. F. & Schiemann, O. (2007). J. Am. Chem. Soc. 129, 6736–6745.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCamalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351–356.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGheorghe, A., Matsuno, A. & Reiser, O. (2006). Adv. Synth. Catal. 348, 1016—1020.  Web of Science CrossRef Google Scholar
First citationGoswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420.  Web of Science CrossRef CAS Google Scholar
First citationHein, J. E. & Fokin, V. V. (2010). Chem. Soc. Rev. 39, 1302—1315.  Web of Science CrossRef Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationIshida, T., Tomioka, K., Nogami, T., Yoshikawa, H., Yasui, M., Iwasaki, F., Takeda, N. & Ishikawa, M. (1995). Chem. Phys. Lett. 247, 7–12.  CSD CrossRef CAS Web of Science Google Scholar
First citationIwasaki, F., Yoshikawa, J. H., Yamamoto, H., Kan-nari, E., Takada, K., Yasui, M., Ishida, T. & Nogami, T. (1999a). Acta Cryst. B55, 231–245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIwasaki, F., Yoshikawa, J. H., Yamamoto, H., Takada, K., Kan-nari, E., Yasui, M., Ishida, T. & Nogami, T. (1999b). Acta Cryst. B55, 1057–1067.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKulis, J., Bell, C. A., Micallef, A. S., Jia, Z. & Monteiro, M. J. (2009). Macromolecules, 42, 8218–8227.  Web of Science CrossRef CAS Google Scholar
First citationLewis, J. E. M., McAdam, C. J., Gardiner, M. G. & Crowley, J. D. (2013). Chem. Commun. 49, 3398–3400.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcAdam, C. J., Cameron, S. A., Hanton, L. R., Manning, A. R., Moratti, S. C. & Simpson, J. (2012). CrystEngComm, 14, 4369–4383.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakazawa, S., Nishida, S., Ise, T., Yoshino, T., Mori, N., Rahimi, R. D., Sato, K., Morita, Y., Toyota, K., Shiomi, D., Kitagawa, M., Hara, H., Carl, P., Hofer, P. & Takui, T. (2012). Angew. Chem. Int. Ed. 51, 9860–9864.  Web of Science CSD CrossRef CAS Google Scholar
First citationPang, X., Wang, H., Zhao, X. R. & Wei Jin, W. J. (2013). Dalton Trans., 42, 8788–8795.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPolovyanenko, D. N., Bagryanskaya, E. G., Schnegg, A., Mobius, K., Coleman, A. W., Ananchenko, G. S., Udachin, K. A. & Ripmeester, J. A. (2008). Phys. Chem. Chem. Phys. 10, 5299–5307.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoegiarto, A. C., Yan, W., Kent, A. D. & Ward, M. D. (2011). J. Mater. Chem. 21, 2204–2219.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakur, A., Adarsh, N. A., Chakraborty, A., Devi, M. & Ghosh, S. (2010). J. Organomet. Chem. 695, 1059–1064.  Web of Science CSD CrossRef CAS Google Scholar
First citationTogashi, K., Imachi, R., Tomioka, K., Tsuboi, H., Ishida, T., Nogami, T., Takeda, N. & Ishikawa, M. (1996). Bull. Chem. Soc. Jpn, 69, 2821–2830.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, M. M., Li, J., Mano, E., Song, Z. J. & Tschaen, D. M. (2005). Org. Synth. 81, 195–203.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds