organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-[(4-hy­dr­oxy­benzyl­­idene)aza­nium­yl]benzoate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 August 2014; accepted 9 August 2014; online 16 August 2014)

The title Schiff base, C14H11NO3, crystallizes as a zwitterion (i.e. proton transfer from the carb­oxy­lic acid group to the imine N atom). The dihedral angle between the aromatic rings is 19.59 (6)° and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R24(24) loops. The dimers are linked by C—H⋯O inter­actions, generating (211) sheets.

1. Related literature

For related structures, see: Hang et al. (2010[Hang, Z.-X., Dong, B. & Wang, X.-W. (2010). Acta Cryst. E66, o1776.]); Ligtenbarg et al. (1999[Ligtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807-812.]); Trzesowska-Kruszynska (2010[Trzesowska-Kruszynska, A. (2010). Struct. Chem. 21, 131-138.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H11NO3

  • Mr = 241.24

  • Monoclinic, P 21 /n

  • a = 3.8612 (5) Å

  • b = 15.280 (3) Å

  • c = 18.604 (3) Å

  • β = 90.347 (8)°

  • V = 1097.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.38 × 0.17 × 0.15 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.985

  • 17364 measured reflections

  • 2089 independent reflections

  • 1363 reflections with I > 2σ(I)

  • Rint = 0.065

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.124

  • S = 1.15

  • 2089 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.95 (4) 1.71 (4) 2.656 (3) 173 (3)
N1—H1⋯O1 1.00 (3) 1.62 (3) 2.522 (3) 148 (2)
C6—H6⋯O2ii 0.93 2.51 3.397 (4) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized for forming different metal complexes.

The crystal structures of N-(2-Carboxyphenyl)salicylidenimine (Ligtenbarg et al., 1999), 2-((4-(dimethylamino)benzylidene)ammonio) benzoate pentahydrate (Trzesowska-Kruszynska, 2010) and 2-[(2-hydroxy-4-methoxybenzylidene)azaniumyl]benzoate monohydrate (Hang, et al., 2010) have been published which are related to the title compound (I).

The title compound has been crystalized in the zwitterion form. In (I) the moieties of 2-aminobenzoic acid A (C1—C7/N1/O1/O2) and the 4-hydroxybenzalehyde B (C8—C14/O3) are planar with r.m.s. deviation of 0.0133 and 0.0219 Å, respectively. The dihedral angle between A/B is 19.589 (58)°. In (I), S(6) ring motif is present due to H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are dimerized from end to end due to H-bondings of O—H···O type (Table 1, Fig. 2) and form R24(24) loop. The dimers are further interlinked due to C—H···O bonds.

Related literature top

For related structures, see: Hang et al. (2010); Ligtenbarg et al. (1999); Trzesowska-Kruszynska (2010).

Experimental top

Equimolar quantities of 2-aminobenzoic acid and 4-hydroxybenzaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 2 h. The resulting solution was kept at room temperature which afforded yellow needles after two days.

Refinement top

The coordinates of H1 and H3A were refined. The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy & x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers which are interlinked.
(E)-2-[(4-hydroxybenzylidene)azaniumyl]benzoate top
Crystal data top
C14H11NO3F(000) = 504
Mr = 241.24Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.8612 (5) ÅCell parameters from 1363 reflections
b = 15.280 (3) Åθ = 1.8–26.0°
c = 18.604 (3) ŵ = 0.10 mm1
β = 90.347 (8)°T = 296 K
V = 1097.6 (3) Å3Cut needle, yellow
Z = 40.38 × 0.17 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2089 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1818
Tmin = 0.962, Tmax = 0.985l = 2222
17364 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0187P)2 + 1.0858P]
where P = (Fo2 + 2Fc2)/3
2089 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H11NO3V = 1097.6 (3) Å3
Mr = 241.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8612 (5) ŵ = 0.10 mm1
b = 15.280 (3) ÅT = 296 K
c = 18.604 (3) Å0.38 × 0.17 × 0.15 mm
β = 90.347 (8)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1363 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.985Rint = 0.065
17364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.18 e Å3
2089 reflectionsΔρmin = 0.23 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1341 (6)0.08844 (13)0.32981 (10)0.0469 (6)
O20.0144 (7)0.18735 (14)0.24574 (12)0.0580 (7)
O30.6380 (6)0.22716 (14)0.59807 (11)0.0489 (6)
H3A0.701 (9)0.177 (2)0.6251 (19)0.073*
N10.0068 (6)0.07058 (16)0.30803 (13)0.0360 (6)
H10.067 (7)0.016 (2)0.3337 (15)0.043*
C10.0114 (8)0.1120 (2)0.26817 (16)0.0394 (7)
C20.1414 (7)0.04003 (18)0.22116 (14)0.0328 (7)
C30.2813 (8)0.0637 (2)0.15519 (15)0.0398 (7)
H30.28170.12230.14170.048*
C40.4196 (8)0.0021 (2)0.10915 (16)0.0460 (8)
H40.51030.01920.06490.055*
C50.4233 (8)0.0847 (2)0.12868 (16)0.0461 (8)
H50.51710.12610.09750.055*
C60.2890 (8)0.1107 (2)0.19417 (16)0.0416 (8)
H60.29310.16940.20740.050*
C70.1485 (7)0.04873 (18)0.23973 (14)0.0332 (7)
C80.0590 (7)0.14802 (19)0.33225 (15)0.0370 (7)
H80.01250.19550.30250.044*
C90.1993 (7)0.16514 (18)0.40216 (15)0.0342 (7)
C100.2987 (7)0.25053 (19)0.41916 (16)0.0384 (7)
H100.26740.29470.38540.046*
C110.4416 (8)0.27050 (19)0.48472 (16)0.0397 (7)
H110.50630.32780.49500.048*
C120.4901 (8)0.20511 (19)0.53595 (15)0.0365 (7)
C130.3814 (7)0.12005 (18)0.52047 (15)0.0375 (7)
H130.40510.07640.55500.045*
C140.2400 (8)0.10038 (19)0.45483 (15)0.0376 (7)
H140.17000.04330.44510.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0702 (15)0.0380 (12)0.0324 (12)0.0036 (11)0.0144 (11)0.0019 (9)
O20.0942 (19)0.0323 (12)0.0474 (14)0.0034 (13)0.0117 (13)0.0025 (11)
O30.0679 (16)0.0367 (13)0.0419 (13)0.0001 (11)0.0187 (11)0.0015 (10)
N10.0437 (15)0.0313 (14)0.0329 (13)0.0036 (11)0.0026 (11)0.0010 (11)
C10.0498 (19)0.0336 (17)0.0347 (17)0.0006 (14)0.0009 (15)0.0032 (14)
C20.0340 (16)0.0343 (16)0.0300 (15)0.0000 (13)0.0007 (13)0.0007 (12)
C30.0438 (18)0.0382 (18)0.0374 (17)0.0019 (14)0.0049 (14)0.0030 (14)
C40.0479 (19)0.056 (2)0.0344 (18)0.0010 (16)0.0085 (15)0.0005 (15)
C50.050 (2)0.048 (2)0.0400 (18)0.0060 (16)0.0051 (16)0.0115 (16)
C60.0443 (19)0.0354 (17)0.0452 (19)0.0038 (14)0.0015 (15)0.0032 (14)
C70.0370 (17)0.0347 (17)0.0278 (15)0.0001 (13)0.0005 (13)0.0003 (12)
C80.0401 (17)0.0319 (16)0.0390 (17)0.0000 (13)0.0009 (14)0.0033 (14)
C90.0350 (16)0.0313 (16)0.0362 (16)0.0019 (13)0.0024 (13)0.0017 (13)
C100.0439 (18)0.0305 (16)0.0407 (18)0.0027 (14)0.0066 (14)0.0064 (13)
C110.0461 (18)0.0271 (16)0.0457 (19)0.0011 (13)0.0075 (15)0.0018 (14)
C120.0389 (17)0.0359 (17)0.0345 (16)0.0020 (13)0.0027 (14)0.0028 (13)
C130.0472 (19)0.0289 (16)0.0365 (17)0.0018 (14)0.0006 (14)0.0047 (13)
C140.0442 (18)0.0280 (16)0.0404 (17)0.0022 (13)0.0000 (14)0.0035 (13)
Geometric parameters (Å, º) top
O1—C11.289 (3)C5—H50.9300
O2—C11.225 (3)C6—C71.380 (4)
O3—C121.329 (3)C6—H60.9300
O3—H3A0.95 (4)C8—C91.430 (4)
N1—C81.291 (3)C8—H80.9300
N1—C71.420 (3)C9—C101.396 (4)
N1—H11.00 (3)C9—C141.401 (4)
C1—C21.522 (4)C10—C111.370 (4)
C2—C31.386 (4)C10—H100.9300
C2—C71.400 (4)C11—C121.393 (4)
C3—C41.378 (4)C11—H110.9300
C3—H30.9300C12—C131.395 (4)
C4—C51.375 (4)C13—C141.368 (4)
C4—H40.9300C13—H130.9300
C5—C61.380 (4)C14—H140.9300
C12—O3—H3A111 (2)C6—C7—N1122.4 (3)
C8—N1—C7127.0 (3)C2—C7—N1116.1 (2)
C8—N1—H1122.7 (16)N1—C8—C9123.9 (3)
C7—N1—H1109.9 (16)N1—C8—H8118.0
O2—C1—O1124.2 (3)C9—C8—H8118.0
O2—C1—C2119.2 (3)C10—C9—C14118.2 (3)
O1—C1—C2116.6 (3)C10—C9—C8118.6 (3)
C3—C2—C7117.6 (3)C14—C9—C8123.2 (3)
C3—C2—C1117.9 (3)C11—C10—C9121.2 (3)
C7—C2—C1124.5 (2)C11—C10—H10119.4
C4—C3—C2121.4 (3)C9—C10—H10119.4
C4—C3—H3119.3C10—C11—C12120.1 (3)
C2—C3—H3119.3C10—C11—H11120.0
C5—C4—C3119.9 (3)C12—C11—H11120.0
C5—C4—H4120.0O3—C12—C11117.9 (3)
C3—C4—H4120.0O3—C12—C13122.9 (3)
C4—C5—C6120.5 (3)C11—C12—C13119.2 (3)
C4—C5—H5119.8C14—C13—C12120.5 (3)
C6—C5—H5119.8C14—C13—H13119.8
C5—C6—C7119.2 (3)C12—C13—H13119.8
C5—C6—H6120.4C13—C14—C9120.8 (3)
C7—C6—H6120.4C13—C14—H14119.6
C6—C7—C2121.4 (3)C9—C14—H14119.6
O2—C1—C2—C31.9 (4)C8—N1—C7—C611.1 (5)
O1—C1—C2—C3178.8 (3)C8—N1—C7—C2169.5 (3)
O2—C1—C2—C7177.6 (3)C7—N1—C8—C9179.4 (3)
O1—C1—C2—C71.7 (4)N1—C8—C9—C10172.3 (3)
C7—C2—C3—C40.6 (4)N1—C8—C9—C148.1 (5)
C1—C2—C3—C4179.0 (3)C14—C9—C10—C111.9 (4)
C2—C3—C4—C50.6 (5)C8—C9—C10—C11178.6 (3)
C3—C4—C5—C60.1 (5)C9—C10—C11—C120.0 (5)
C4—C5—C6—C70.4 (5)C10—C11—C12—O3178.3 (3)
C5—C6—C7—C20.4 (4)C10—C11—C12—C132.1 (4)
C5—C6—C7—N1179.7 (3)O3—C12—C13—C14178.0 (3)
C3—C2—C7—C60.0 (4)C11—C12—C13—C142.3 (4)
C1—C2—C7—C6179.5 (3)C12—C13—C14—C90.5 (4)
C3—C2—C7—N1179.3 (3)C10—C9—C14—C131.6 (4)
C1—C2—C7—N11.2 (4)C8—C9—C14—C13178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.95 (4)1.71 (4)2.656 (3)173 (3)
N1—H1···O11.00 (3)1.62 (3)2.522 (3)148 (2)
C6—H6···O2ii0.932.513.397 (4)160
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.95 (4)1.71 (4)2.656 (3)173 (3)
N1—H1···O11.00 (3)1.62 (3)2.522 (3)148 (2)
C6—H6···O2ii0.932.513.397 (4)160.1
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHang, Z.-X., Dong, B. & Wang, X.-W. (2010). Acta Cryst. E66, o1776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLigtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807–812.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzesowska-Kruszynska, A. (2010). Struct. Chem. 21, 131–138.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds