organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-iodo-2-methyl-3-[(4-methyl­phenyl)­sulfon­yl]-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 August 2014; accepted 14 August 2014; online 20 August 2014)

In the title compound, C16H13IO3S, the dihedral angle between the planes of the benzo­furan ring system [r.m.s. deviation = 0.015 (2) Å] and the 4-methyl­phenyl ring is 70.35 (5)°. In the crystal, mol­ecules are linked by pairs of ππ inter­actions between the furan and benzene rings, with centroid–centroid distances of 3.667 (3) and 3.701 (3) Å. The mol­ecules stack along the a-axis direction. In addition, pairs of C—H⋯O hydrogen bonds between inversion-related dimers [which generate R22(10) loops] and a short I⋯I [3.7534 (3) Å] contact are observed.

1. Related literature

For a related structure and background to benzo­furan derivatives, see: Choi & Lee (2014[Choi, H. D. & Lee, U. (2014). Acta Cryst. E70, o1018-o1019.]). For further synthetic details, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H13IO3S

  • Mr = 412.22

  • Triclinic, [P \overline 1]

  • a = 7.2161 (1) Å

  • b = 10.5267 (2) Å

  • c = 11.3442 (2) Å

  • α = 111.540 (1)°

  • β = 90.882 (1)°

  • γ = 108.760 (1)°

  • V = 750.19 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.45 × 0.37 × 0.33 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.427, Tmax = 0.520

  • 13690 measured reflections

  • 3730 independent reflections

  • 3508 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.09

  • 3730 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.44 3.311 (2) 153
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing program of benzofuran derivatives (Choi & Lee, 2014), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.015 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 4-methylphenyl ring is 70.35 (5)°. In the crystal structure (Fig. 2), molecules are linked by pairs of ππ interactions between the furan and benzene rings of neighbouring molecules. The molecules stack along the a-axis direction. The relevant centroid names for ππ stacking interactions are Cg1 for furan ring (C1/C2/C7/O1/C8) and Cg2 for the benzene ring (C2–C7). The centroid–centroid separations of Cg1···Cg2iii and Cg1···Cg2iv are 3.667 (3) and 3.701 (3) Å, respectively. The symmetry codes are: (iii) - x, - y, - z + 1; (iv) - x + 1, - y, - z + 1. The slippages of Cg1···Cg2iii and Cg1···Cg2iv are 1.379 (3) and 1.090 (3) Å, respectively. In the crystal (Fig. 2), C—H···O hydrogen bonds (Table 1) between inversion-related dimers and short I1···I1ii [3.7534 (3) Å] contacts are observed.

Related literature top

For a related structure and background to benzofuran derivatives, see: Choi & Lee (2014). For further synthetic details, see: Choi et al. (1999).

Experimental top

The starting material 5-iodo-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-iodo-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (342 mg, 0.9 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution (2 × 20 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 69% (284 mg); m.p. 461–462 K; Rf = 0.51 (hexane–ethyl acetate, 4:1 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound (22 mg) in ethtyl acetate (10 ml) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the C—H···O, ππ and I···I interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 2; (ii) - x + 1, - y, - z; (iii) - x, - y, - z + 1; (iv) - x + 1, - y, - z + 1.]
5-iodo-2-methyl-3-[(4-methylphenyl)sulfonyl]-1-benzofuran top
Crystal data top
C16H13IO3SZ = 2
Mr = 412.22F(000) = 404
Triclinic, P1Dx = 1.825 Mg m3
Hall symbol: -P 1Melting point = 462–461 K
a = 7.2161 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5267 (2) ÅCell parameters from 9550 reflections
c = 11.3442 (2) Åθ = 3.0–28.4°
α = 111.540 (1)°µ = 2.28 mm1
β = 90.882 (1)°T = 173 K
γ = 108.760 (1)°Block, colourless
V = 750.19 (2) Å30.45 × 0.37 × 0.33 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3730 independent reflections
Radiation source: rotating anode3508 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1412
Tmin = 0.427, Tmax = 0.520l = 1515
13690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.059H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.4508P]
where P = (Fo2 + 2Fc2)/3
3730 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C16H13IO3Sγ = 108.760 (1)°
Mr = 412.22V = 750.19 (2) Å3
Triclinic, P1Z = 2
a = 7.2161 (1) ÅMo Kα radiation
b = 10.5267 (2) ŵ = 2.28 mm1
c = 11.3442 (2) ÅT = 173 K
α = 111.540 (1)°0.45 × 0.37 × 0.33 mm
β = 90.882 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3730 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3508 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.520Rint = 0.027
13690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.09Δρmax = 0.53 e Å3
3730 reflectionsΔρmin = 0.82 e Å3
192 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 8.23 (s, 1H), 7.87 (d, J = 8.56 Hz, 2H), 7.58 (dd, J = 8.56 and 1.72 Hz, 1H), 7.32 (d, J = 8.20 Hz, 2H), 7.17 (d, J = 8.56 Hz, 1H), 2.78 (s, 3H), 2.40 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.34881 (2)0.005191 (17)0.133697 (13)0.03924 (6)
S10.51630 (7)0.39711 (5)0.72563 (4)0.02485 (10)
O10.1860 (2)0.00618 (16)0.66250 (15)0.0303 (3)
O20.6298 (2)0.41551 (16)0.62596 (13)0.0302 (3)
O30.6169 (2)0.43950 (18)0.85197 (14)0.0346 (3)
C10.3716 (3)0.2132 (2)0.66867 (18)0.0245 (4)
C20.3274 (3)0.1121 (2)0.53672 (18)0.0236 (4)
C30.3694 (3)0.1210 (2)0.41971 (19)0.0257 (4)
H30.44510.21080.41480.031*
C40.2959 (3)0.0065 (2)0.31154 (19)0.0283 (4)
C50.1880 (3)0.1412 (2)0.3154 (2)0.0329 (4)
H50.14440.22670.23860.040*
C60.1449 (3)0.1498 (2)0.4313 (2)0.0326 (4)
H60.07070.23980.43640.039*
C70.2144 (3)0.0220 (2)0.5385 (2)0.0268 (4)
C80.2817 (3)0.1378 (2)0.7397 (2)0.0281 (4)
C90.2619 (3)0.1795 (3)0.8770 (2)0.0365 (5)
H9A0.36260.27510.92710.055*
H9B0.28020.10660.90580.055*
H9C0.12990.18440.88930.055*
C100.3497 (3)0.4906 (2)0.73988 (18)0.0248 (4)
C110.3006 (3)0.5246 (2)0.63922 (19)0.0288 (4)
H110.35300.49500.56150.035*
C120.1741 (3)0.6022 (2)0.6538 (2)0.0328 (4)
H120.14220.62740.58580.039*
C130.0926 (3)0.6441 (2)0.7656 (2)0.0309 (4)
C140.1398 (3)0.6056 (2)0.8638 (2)0.0345 (5)
H140.08250.63150.93990.041*
C150.2688 (3)0.5302 (2)0.85277 (19)0.0317 (4)
H150.30160.50590.92110.038*
C160.0386 (4)0.7339 (2)0.7832 (3)0.0412 (5)
H16A0.04290.83780.82150.062*
H16B0.13350.71120.83990.062*
H16C0.11040.71100.69980.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04516 (10)0.04799 (10)0.02485 (8)0.02137 (7)0.00481 (6)0.01037 (6)
S10.0240 (2)0.0273 (2)0.0206 (2)0.00442 (17)0.00161 (17)0.01065 (18)
O10.0292 (7)0.0299 (7)0.0393 (8)0.0103 (6)0.0085 (6)0.0220 (6)
O20.0286 (7)0.0306 (7)0.0267 (7)0.0034 (6)0.0067 (6)0.0122 (6)
O30.0315 (7)0.0426 (8)0.0248 (7)0.0068 (6)0.0035 (6)0.0135 (6)
C10.0223 (8)0.0273 (9)0.0269 (9)0.0090 (7)0.0047 (7)0.0137 (8)
C20.0197 (8)0.0248 (9)0.0292 (9)0.0091 (7)0.0029 (7)0.0128 (7)
C30.0245 (9)0.0259 (9)0.0277 (9)0.0085 (7)0.0032 (7)0.0119 (8)
C40.0269 (9)0.0314 (10)0.0281 (10)0.0144 (8)0.0017 (7)0.0100 (8)
C50.0312 (10)0.0265 (10)0.0369 (11)0.0121 (8)0.0046 (8)0.0065 (8)
C60.0278 (10)0.0237 (9)0.0472 (12)0.0083 (8)0.0008 (9)0.0158 (9)
C70.0224 (8)0.0287 (9)0.0355 (10)0.0106 (7)0.0043 (7)0.0182 (8)
C80.0256 (9)0.0328 (10)0.0335 (10)0.0126 (8)0.0057 (8)0.0192 (8)
C90.0394 (12)0.0470 (13)0.0352 (11)0.0175 (10)0.0129 (9)0.0269 (10)
C100.0285 (9)0.0209 (8)0.0216 (8)0.0046 (7)0.0016 (7)0.0084 (7)
C110.0320 (10)0.0302 (10)0.0222 (9)0.0064 (8)0.0042 (7)0.0120 (8)
C120.0351 (11)0.0312 (10)0.0325 (11)0.0065 (8)0.0004 (8)0.0176 (9)
C130.0280 (9)0.0198 (9)0.0388 (11)0.0024 (7)0.0036 (8)0.0103 (8)
C140.0426 (12)0.0287 (10)0.0300 (10)0.0121 (9)0.0111 (9)0.0094 (8)
C150.0427 (11)0.0307 (10)0.0212 (9)0.0113 (9)0.0047 (8)0.0111 (8)
C160.0402 (12)0.0277 (11)0.0558 (15)0.0123 (9)0.0077 (11)0.0161 (10)
Geometric parameters (Å, º) top
I1—C42.099 (2)C8—C91.478 (3)
I1—I1i3.7534 (3)C9—H9A0.9800
S1—O31.4389 (14)C9—H9B0.9800
S1—O21.4400 (14)C9—H9C0.9800
S1—C11.737 (2)C10—C111.388 (3)
S1—C101.758 (2)C10—C151.394 (3)
O1—C81.369 (3)C11—C121.383 (3)
O1—C71.381 (3)C11—H110.9500
C1—C81.362 (3)C12—C131.388 (3)
C1—C21.439 (3)C12—H120.9500
C2—C71.393 (3)C13—C141.389 (3)
C2—C31.396 (3)C13—C161.507 (3)
C3—C41.379 (3)C14—C151.384 (3)
C3—H30.9500C14—H140.9500
C4—C51.398 (3)C15—H150.9500
C5—C61.384 (3)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.374 (3)C16—H16C0.9800
C6—H60.9500
C4—I1—I1i152.81 (5)O1—C8—C9115.80 (17)
O3—S1—O2119.63 (9)C8—C9—H9A109.5
O3—S1—C1108.45 (10)C8—C9—H9B109.5
O2—S1—C1106.07 (9)H9A—C9—H9B109.5
O3—S1—C10107.93 (10)C8—C9—H9C109.5
O2—S1—C10108.10 (9)H9A—C9—H9C109.5
C1—S1—C10105.86 (9)H9B—C9—H9C109.5
C8—O1—C7107.15 (15)C11—C10—C15120.7 (2)
C8—C1—C2107.56 (17)C11—C10—S1119.87 (16)
C8—C1—S1126.69 (16)C15—C10—S1119.40 (16)
C2—C1—S1125.74 (14)C12—C11—C10118.98 (19)
C7—C2—C3119.25 (18)C12—C11—H11120.5
C7—C2—C1105.06 (17)C10—C11—H11120.5
C3—C2—C1135.69 (17)C11—C12—C13121.5 (2)
C4—C3—C2116.96 (18)C11—C12—H12119.3
C4—C3—H3121.5C13—C12—H12119.3
C2—C3—H3121.5C12—C13—C14118.5 (2)
C3—C4—C5123.1 (2)C12—C13—C16121.3 (2)
C3—C4—I1117.72 (15)C14—C13—C16120.1 (2)
C5—C4—I1119.19 (15)C15—C14—C13121.3 (2)
C6—C5—C4119.9 (2)C15—C14—H14119.4
C6—C5—H5120.0C13—C14—H14119.4
C4—C5—H5120.0C14—C15—C10118.99 (19)
C7—C6—C5116.79 (19)C14—C15—H15120.5
C7—C6—H6121.6C10—C15—H15120.5
C5—C6—H6121.6C13—C16—H16A109.5
C6—C7—O1126.11 (18)C13—C16—H16B109.5
C6—C7—C2123.91 (19)H16A—C16—H16B109.5
O1—C7—C2109.97 (17)C13—C16—H16C109.5
C1—C8—O1110.23 (18)H16A—C16—H16C109.5
C1—C8—C9133.9 (2)H16B—C16—H16C109.5
O3—S1—C1—C831.6 (2)C3—C2—C7—O1178.42 (16)
O2—S1—C1—C8161.28 (18)C1—C2—C7—O11.1 (2)
C10—S1—C1—C884.0 (2)C2—C1—C8—O11.4 (2)
O3—S1—C1—C2147.56 (17)S1—C1—C8—O1177.87 (14)
O2—S1—C1—C217.9 (2)C2—C1—C8—C9176.3 (2)
C10—S1—C1—C296.83 (18)S1—C1—C8—C94.4 (4)
C8—C1—C2—C71.5 (2)C7—O1—C8—C10.7 (2)
S1—C1—C2—C7177.78 (15)C7—O1—C8—C9177.42 (17)
C8—C1—C2—C3177.9 (2)O3—S1—C10—C11151.02 (16)
S1—C1—C2—C32.8 (3)O2—S1—C10—C1120.28 (18)
C7—C2—C3—C40.5 (3)C1—S1—C10—C1193.02 (17)
C1—C2—C3—C4179.8 (2)O3—S1—C10—C1528.79 (18)
C2—C3—C4—C51.6 (3)O2—S1—C10—C15159.52 (15)
C2—C3—C4—I1178.02 (14)C1—S1—C10—C1587.17 (17)
I1i—I1—C4—C389.06 (19)C15—C10—C11—C121.8 (3)
I1i—I1—C4—C591.27 (19)S1—C10—C11—C12178.00 (15)
C3—C4—C5—C62.3 (3)C10—C11—C12—C131.3 (3)
I1—C4—C5—C6177.38 (15)C11—C12—C13—C140.4 (3)
C4—C5—C6—C70.6 (3)C11—C12—C13—C16177.49 (19)
C5—C6—C7—O1179.13 (19)C12—C13—C14—C151.5 (3)
C5—C6—C7—C21.5 (3)C16—C13—C14—C15176.3 (2)
C8—O1—C7—C6179.2 (2)C13—C14—C15—C101.0 (3)
C8—O1—C7—C20.3 (2)C11—C10—C15—C140.7 (3)
C3—C2—C7—C62.1 (3)S1—C10—C15—C14179.13 (16)
C1—C2—C7—C6178.35 (19)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3ii0.952.443.311 (2)153
Symmetry code: (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.443.311 (2)153
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D. & Lee, U. (2014). Acta Cryst. E70, o1018–o1019.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds