organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1058-o1059

Crystal structure of 2-ethyl-3-(4-fluoro­phenyl­sulfin­yl)-5,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 August 2014; accepted 22 August 2014; online 30 August 2014)

In the title compound, C18H17FO2S, the dihedral angle between the planes of the benzo­furan ring system (r.m.s. deviation = 0.004 Å) and the 4-fluoro­phenyl ring is 86.38 (6)°. The terminal C atom of the ethyl substituent is displaced by 1.444 (3) Å from the benzo­furan ring system to the same side of the mol­ecule as the 4-fluoro­phenyl ring. In the crystal, mol­ecules are linked via pairs of C—H⋯π inter­actions into inversion-related dimers. These dimers are further linked by ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.715 (3) Å] and between the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.598 (3) Å]. The mol­ecules are stacked along the a-axis direction. In the sulfinyl group, the S and O atoms are disordered over two sets of sites, with site-occupancy factors of 0.797 (3) and 0.213 (3).

1. Related literature

For pharmaceutical properties of benzo­furan compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For natural products with a benzo­furan ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the synthesis of the starting material 2-ethyl-3-(4-fluoro­phenyl­sulfan­yl)-5,7-dimethyl-1-benzo­furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o472.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17FO2S

  • Mr = 316.38

  • Triclinic, [P \overline 1]

  • a = 9.1523 (2) Å

  • b = 9.5503 (2) Å

  • c = 10.3099 (2) Å

  • α = 65.666 (1)°

  • β = 81.636 (1)°

  • γ = 70.782 (1)°

  • V = 775.29 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.45 × 0.41 × 0.27 mm

2.1.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.942

  • 14476 measured reflections

  • 3874 independent reflections

  • 3481 reflections with I > 2σ(I)

  • Rint = 0.028

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.170

  • S = 1.08

  • 3874 reflections

  • 209 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10BCg1i 0.98 2.89 3.822 (2) 159
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran compounds show various pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al.. 2009, Galal et al., 2009, Khan et al., 2005), and potential inhibitor of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These benzofuran compounds are widely occurring in nature (Akgul & Anil, 2003, Soekamto et al., 2003). As a part of our ongoing project of 3-(4-fluorophenylsulfinyl)-5,7-dimethyl-1-benzofuran derivatives containing methyl substituent in 2-position (Choi et al., 2010), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the six constituent atoms. In the sulfinyl group, the S1 and O2 atoms are disordered over two positions with site-occupancy factors, from refinement of 0.797 (3) (part A) and 0.213 (3) (part B). The dihedral angle formed by the benzofuran ring and the 4-fluorophenyl ring is 86.38 (6)°. In the crystal structure (Fig. 2), molecules are linked via pairs of C–H···π interactions (Table 1, Cg1 is the C13-C18 4-fluorophenyl ring) into inversion-related dimers. These dimers are further linked by ππ interactions between the benzene rings of neighbouring molecules with a Cg2···Cg2i distance of 3.715 (3) Å and an interplanar distance of 3.464 (3) Å resulting in a slippage of 1.342 (3) Å (Cg2 is the C2-C7 benzene ring), and between the furan rings of neighbouring molecules with a Cg3···Cg3ii distance of 3.598 (3) Å and an interplanar distance of 3.507 (3) Å resulting in a slippage of 0.804 (3) Å (Cg3 is the C1/C2/C7/O1/C8 furan ring). The molecules are stacked along the a-axis direction.

Related literature top

For the pharmaceutical properties of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 2-ethyl-3-(4-fluorophenylsulfanyl)-5,7-dimethyl-1-benzofuran, see: Choi et al. (1999). For a related structure, see: Choi et al. (2010).

Experimental top

The starting material 2-ethyl-3-(4-fluorophenylsulfanyl)-5,7-dimethyl-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 2-ethyl-3-(4-fluorophenylsulfanyl)-5,7-dimethyl-1-benzofuran (270 mg, 0.9 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 X × 10 ml) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 74% (234 mg); m.p. 378-379 K; Rf = 0.59 (hexane-ethyl acetate, 2:1 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound (20 mg) in acetone (15 ml) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methylene and 0.99 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl and methylene hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).The S1 and O2 atoms of the sulfinyl group is disordered over two positions with site-occupancy factors, from refinement of 0.797 (3) (part A) and 0.213 (3) (part B). The distance of equivalent SO, C(pheny)–S and C(furan)–S pairs were restrained to 1.488 (1), 1.762 (1) and 1.788 (1) Å using command DFIX and DELU, and displacement ellipsoids of S1 and O2 set were restrained using SHELXL command EADP, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The S1 and O2 atoms of the sulfinyl group are disordered over two positions with site-occupancy factors, from refinement of 0.797 (3) (part A) and 0.213 (3) (part B).
[Figure 2] Fig. 2. A view of the C–H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding and disordered part B atoms were omitted for clarity. [Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.]
2-ethyl-3-(4-fluorophenylsulfinyl)-5,7-dimethyl- 1-benzofuran top
Crystal data top
C18H17FO2SV = 775.29 (3) Å3
Mr = 316.38Z = 2
Triclinic, P1F(000) = 332
Hall symbol: -P 1Dx = 1.355 Mg m3
a = 9.1523 (2) ÅMelting point = 379–378 K
b = 9.5503 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.3099 (2) ŵ = 0.22 mm1
α = 65.666 (1)°T = 173 K
β = 81.636 (1)°Block, colourless
γ = 70.782 (1)°0.45 × 0.41 × 0.27 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3874 independent reflections
Radiation source: rotating anode3481 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 28.5°, θmin = 2.2°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.907, Tmax = 0.942l = 1313
14476 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: difference Fourier map
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.8614P]
where P = (Fo2 + 2Fc2)/3
3874 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.94 e Å3
17 restraintsΔρmin = 1.64 e Å3
Crystal data top
C18H17FO2Sγ = 70.782 (1)°
Mr = 316.38V = 775.29 (3) Å3
Triclinic, P1Z = 2
a = 9.1523 (2) ÅMo Kα radiation
b = 9.5503 (2) ŵ = 0.22 mm1
c = 10.3099 (2) ÅT = 173 K
α = 65.666 (1)°0.45 × 0.41 × 0.27 mm
β = 81.636 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3481 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.942Rint = 0.028
14476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06317 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.08Δρmax = 0.94 e Å3
3874 reflectionsΔρmin = 1.64 e Å3
209 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.62-7.67 (m, 2H), 7.15-7.21 (m, 2H), 6.85 (s, 2H), 3.13 (q, J =7.52 Hz, 2H), 2.43 (s, 3H), 2.24 (s, 3H), 1.44 (t, J = 7.52 Hz, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.46524 (7)0.39880 (7)0.27750 (7)0.0245 (2)0.797 (3)
O2A0.3828 (2)0.4499 (2)0.39425 (17)0.0291 (4)0.797 (3)
S1B0.47017 (19)0.40209 (16)0.3147 (3)0.0245 (2)0.20
O2B0.3618 (7)0.4565 (9)0.1973 (6)0.0291 (4)0.20
F10.9355 (2)0.7389 (2)0.05373 (19)0.0497 (4)
O10.69201 (18)0.05783 (19)0.39017 (17)0.0278 (4)
C10.5858 (2)0.20046 (14)0.3595 (2)0.0255 (4)
C20.6924 (2)0.1271 (3)0.4764 (2)0.0250 (4)
C30.7407 (3)0.1777 (3)0.5674 (2)0.0278 (5)
H30.69940.28570.56050.033*
C40.8512 (3)0.0653 (3)0.6687 (2)0.0312 (5)
C50.9101 (3)0.0934 (3)0.6775 (2)0.0324 (5)
H50.98560.16750.74760.039*
C60.8642 (3)0.1485 (3)0.5895 (2)0.0286 (5)
C70.7543 (2)0.0323 (3)0.4904 (2)0.0262 (4)
C80.5892 (2)0.0857 (3)0.3131 (2)0.0264 (4)
C90.9111 (3)0.1158 (4)0.7667 (3)0.0416 (6)
H9A0.85040.22640.75380.062*
H9B1.02010.11050.74390.062*
H9C0.90160.04340.86570.062*
C100.9286 (3)0.3185 (3)0.5983 (3)0.0381 (6)
H10A0.84360.36420.61100.057*
H10B0.99860.38310.67940.057*
H10C0.98570.31920.51040.057*
C110.5104 (3)0.0881 (3)0.1959 (3)0.0334 (5)
H11A0.41310.17840.17350.040*
H11B0.48300.01320.22810.040*
C120.6102 (3)0.1066 (3)0.0612 (3)0.0388 (6)
H12A0.63190.21020.02520.058*
H12B0.55510.10270.01130.058*
H12C0.70780.01890.08320.058*
C130.61273 (19)0.4976 (2)0.2173 (2)0.0284 (4)
C140.6924 (3)0.4950 (3)0.0925 (2)0.0314 (5)
H140.67230.43620.04550.038*
C150.8004 (3)0.5770 (3)0.0365 (3)0.0334 (5)
H150.85510.57590.04890.040*
C160.8272 (3)0.6608 (3)0.1073 (3)0.0333 (5)
C170.7502 (3)0.6671 (3)0.2305 (3)0.0352 (5)
H170.77180.72580.27690.042*
C180.6402 (3)0.5856 (3)0.2857 (3)0.0329 (5)
H180.58390.58980.36980.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0258 (3)0.0285 (3)0.0181 (4)0.0026 (2)0.0041 (2)0.0109 (2)
O2A0.0216 (8)0.0372 (10)0.0300 (9)0.0030 (7)0.0004 (5)0.0190 (8)
S1B0.0258 (3)0.0285 (3)0.0181 (4)0.0026 (2)0.0041 (2)0.0109 (2)
O2B0.0216 (8)0.0372 (10)0.0300 (9)0.0030 (7)0.0004 (5)0.0190 (8)
F10.0540 (10)0.0477 (9)0.0512 (10)0.0292 (8)0.0032 (8)0.0135 (8)
O10.0282 (8)0.0260 (7)0.0279 (8)0.0071 (6)0.0024 (6)0.0094 (6)
C10.0242 (10)0.0257 (7)0.0229 (9)0.0056 (6)0.0007 (7)0.0073 (8)
C20.0224 (9)0.0283 (10)0.0218 (9)0.0083 (8)0.0016 (7)0.0073 (8)
C30.0278 (10)0.0322 (11)0.0253 (10)0.0119 (9)0.0034 (8)0.0118 (9)
C40.0280 (11)0.0438 (13)0.0237 (10)0.0168 (10)0.0018 (8)0.0110 (9)
C50.0266 (11)0.0389 (12)0.0236 (10)0.0112 (9)0.0033 (8)0.0025 (9)
C60.0257 (10)0.0282 (10)0.0257 (10)0.0087 (8)0.0010 (8)0.0045 (8)
C70.0245 (10)0.0291 (10)0.0238 (10)0.0097 (8)0.0006 (8)0.0083 (8)
C80.0240 (10)0.0291 (10)0.0240 (10)0.0081 (8)0.0000 (8)0.0083 (8)
C90.0429 (14)0.0578 (17)0.0311 (12)0.0218 (13)0.0025 (10)0.0183 (12)
C100.0338 (12)0.0280 (11)0.0403 (13)0.0046 (9)0.0036 (10)0.0043 (10)
C110.0333 (12)0.0385 (12)0.0318 (12)0.0107 (10)0.0057 (9)0.0152 (10)
C120.0540 (16)0.0366 (13)0.0276 (11)0.0157 (11)0.0010 (11)0.0126 (10)
C130.0288 (10)0.0226 (10)0.0265 (10)0.0019 (7)0.0031 (8)0.0060 (8)
C140.0376 (12)0.0295 (11)0.0264 (10)0.0074 (9)0.0028 (9)0.0113 (9)
C150.0375 (12)0.0328 (11)0.0259 (11)0.0084 (10)0.0011 (9)0.0097 (9)
C160.0363 (12)0.0262 (11)0.0322 (12)0.0087 (9)0.0043 (9)0.0057 (9)
C170.0461 (14)0.0261 (11)0.0330 (12)0.0053 (10)0.0081 (10)0.0129 (9)
C180.0392 (12)0.0263 (10)0.0267 (11)0.0006 (9)0.0011 (9)0.0108 (9)
Geometric parameters (Å, º) top
S1A—O2B1.180 (3)C8—C111.484 (3)
S1A—O2A1.4943 (9)C9—H9A0.9800
S1A—C11.7597 (10)C9—H9B0.9800
S1A—C131.7918 (10)C9—H9C0.9800
O2A—S1B1.182 (2)C10—H10A0.9800
S1B—O2B1.4869 (10)C10—H10B0.9800
S1B—C11.7633 (10)C10—H10C0.9800
S1B—C131.7865 (10)C11—C121.527 (4)
F1—C161.353 (3)C11—H11A0.9900
O1—C81.366 (3)C11—H11B0.9900
O1—C71.387 (3)C12—H12A0.9800
C1—C81.355 (3)C12—H12B0.9800
C1—C21.445 (3)C12—H12C0.9800
C2—C71.391 (3)C13—C141.389 (3)
C2—C31.395 (3)C13—C181.395 (3)
C3—C41.391 (3)C14—C151.376 (4)
C3—H30.9500C14—H140.9500
C4—C51.399 (4)C15—C161.377 (4)
C4—C91.513 (3)C15—H150.9500
C5—C61.388 (3)C16—C171.374 (4)
C5—H50.9500C17—C181.388 (4)
C6—C71.384 (3)C17—H170.9500
C6—C101.502 (3)C18—H180.9500
O2B—S1A—O2A98.8 (4)H9A—C9—H9B109.5
O2B—S1A—C1132.7 (4)C4—C9—H9C109.5
O2A—S1A—C1106.79 (11)H9A—C9—H9C109.5
O2B—S1A—C13113.2 (4)H9B—C9—H9C109.5
O2A—S1A—C13104.60 (11)C6—C10—H10A109.5
C1—S1A—C1398.06 (10)C6—C10—H10B109.5
S1B—O2A—S1A11.31 (14)H10A—C10—H10B109.5
O2A—S1B—O2B99.1 (3)C6—C10—H10C109.5
O2A—S1B—C1124.2 (2)H10A—C10—H10C109.5
O2B—S1B—C1112.3 (3)H10B—C10—H10C109.5
O2A—S1B—C13121.5 (2)C8—C11—C12112.6 (2)
O2B—S1B—C1399.4 (3)C8—C11—H11A109.1
C1—S1B—C1398.13 (12)C12—C11—H11A109.1
S1A—O2B—S1B11.63 (11)C8—C11—H11B109.1
C8—O1—C7106.69 (17)C12—C11—H11B109.1
C8—C1—C2108.00 (14)H11A—C11—H11B107.8
C8—C1—S1A120.39 (16)C11—C12—H12A109.5
C2—C1—S1A131.60 (16)C11—C12—H12B109.5
C8—C1—S1B132.68 (19)H12A—C12—H12B109.5
C2—C1—S1B119.05 (19)C11—C12—H12C109.5
S1A—C1—S1B13.29 (10)H12A—C12—H12C109.5
C7—C2—C3119.4 (2)H12B—C12—H12C109.5
C7—C2—C1104.31 (18)C14—C13—C18120.08 (16)
C3—C2—C1136.2 (2)C14—C13—S1B130.30 (19)
C4—C3—C2118.0 (2)C18—C13—S1B109.61 (19)
C4—C3—H3121.0C14—C13—S1A117.84 (16)
C2—C3—H3121.0C18—C13—S1A121.90 (17)
C3—C4—C5120.1 (2)S1B—C13—S1A13.08 (10)
C3—C4—C9119.9 (2)C15—C14—C13120.4 (2)
C5—C4—C9120.0 (2)C15—C14—H14119.8
C6—C5—C4123.6 (2)C13—C14—H14119.8
C6—C5—H5118.2C14—C15—C16118.4 (2)
C4—C5—H5118.2C14—C15—H15120.8
C7—C6—C5114.2 (2)C16—C15—H15120.8
C7—C6—C10122.3 (2)F1—C16—C17118.7 (2)
C5—C6—C10123.5 (2)F1—C16—C15118.4 (2)
C6—C7—O1124.8 (2)C17—C16—C15122.9 (2)
C6—C7—C2124.7 (2)C16—C17—C18118.5 (2)
O1—C7—C2110.49 (18)C16—C17—H17120.8
C1—C8—O1110.49 (18)C18—C17—H17120.8
C1—C8—C11133.2 (2)C17—C18—C13119.7 (2)
O1—C8—C11116.23 (19)C17—C18—H18120.2
C4—C9—H9A109.5C13—C18—H18120.2
C4—C9—H9B109.5
O2B—S1A—O2A—S1B169.5 (5)C10—C6—C7—C2179.1 (2)
C1—S1A—O2A—S1B50.7 (4)C8—O1—C7—C6179.7 (2)
C13—S1A—O2A—S1B52.6 (4)C8—O1—C7—C20.5 (2)
S1A—O2A—S1B—O2B8.3 (4)C3—C2—C7—C60.5 (3)
S1A—O2A—S1B—C1116.6 (4)C1—C2—C7—C6179.3 (2)
S1A—O2A—S1B—C13115.3 (4)C3—C2—C7—O1179.77 (18)
O2A—S1A—O2B—S1B8.1 (4)C1—C2—C7—O10.1 (2)
C1—S1A—O2B—S1B130.9 (7)C2—C1—C8—O10.7 (2)
C13—S1A—O2B—S1B102.0 (5)S1A—C1—C8—O1179.05 (14)
O2A—S1B—O2B—S1A169.7 (5)S1B—C1—C8—O1174.62 (18)
C1—S1B—O2B—S1A36.8 (6)C2—C1—C8—C11178.0 (2)
C13—S1B—O2B—S1A66.1 (5)S1A—C1—C8—C111.8 (4)
O2B—S1A—C1—C813.3 (6)S1B—C1—C8—C118.1 (4)
O2A—S1A—C1—C8133.10 (19)C7—O1—C8—C10.8 (2)
C13—S1A—C1—C8118.93 (19)C7—O1—C8—C11178.54 (18)
O2B—S1A—C1—C2166.9 (5)C1—C8—C11—C1296.1 (3)
O2A—S1A—C1—C247.2 (2)O1—C8—C11—C1281.0 (3)
C13—S1A—C1—C260.8 (2)O2A—S1B—C13—C14158.4 (3)
O2B—S1A—C1—S1B146.0 (6)O2B—S1B—C13—C1451.6 (4)
O2A—S1A—C1—S1B26.3 (2)C1—S1B—C13—C1462.8 (3)
C13—S1A—C1—S1B81.7 (2)O2A—S1B—C13—C1821.6 (3)
O2A—S1B—C1—C8115.2 (3)O2B—S1B—C13—C18128.4 (3)
O2B—S1B—C1—C83.8 (4)C1—S1B—C13—C18117.2 (2)
C13—S1B—C1—C8107.5 (3)O2A—S1B—C13—S1A139.2 (4)
O2A—S1B—C1—C258.2 (3)O2B—S1B—C13—S1A32.4 (4)
O2B—S1B—C1—C2177.2 (4)C1—S1B—C13—S1A81.9 (2)
C13—S1B—C1—C279.1 (2)O2B—S1A—C13—C1462.9 (4)
O2A—S1B—C1—S1A139.6 (4)O2A—S1A—C13—C14169.35 (18)
O2B—S1B—C1—S1A20.6 (4)C1—S1A—C13—C1480.87 (19)
C13—S1B—C1—S1A83.1 (2)O2B—S1A—C13—C18112.2 (4)
C8—C1—C2—C70.4 (2)O2A—S1A—C13—C185.7 (2)
S1A—C1—C2—C7179.35 (18)C1—S1A—C13—C18104.0 (2)
S1B—C1—C2—C7175.26 (16)O2B—S1A—C13—S1B133.5 (4)
C8—C1—C2—C3179.8 (2)O2A—S1A—C13—S1B27.1 (2)
S1A—C1—C2—C30.4 (4)C1—S1A—C13—S1B82.7 (2)
S1B—C1—C2—C34.9 (4)C18—C13—C14—C150.9 (3)
C7—C2—C3—C40.6 (3)S1B—C13—C14—C15179.1 (2)
C1—C2—C3—C4179.2 (2)S1A—C13—C14—C15176.07 (18)
C2—C3—C4—C50.2 (3)C13—C14—C15—C160.2 (4)
C2—C3—C4—C9178.0 (2)C14—C15—C16—F1178.7 (2)
C3—C4—C5—C60.1 (4)C14—C15—C16—C170.5 (4)
C9—C4—C5—C6178.4 (2)F1—C16—C17—C18179.4 (2)
C4—C5—C6—C70.2 (3)C15—C16—C17—C180.2 (4)
C4—C5—C6—C10179.5 (2)C16—C17—C18—C131.2 (3)
C5—C6—C7—O1179.3 (2)C14—C13—C18—C171.6 (3)
C10—C6—C7—O10.0 (3)S1B—C13—C18—C17178.40 (19)
C5—C6—C7—C20.1 (3)S1A—C13—C18—C17176.58 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg1i0.982.893.822 (2)159
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg1i0.982.893.822 (2)159
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The X-ray Centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1058-o1059
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds