organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o974-o975

Crystal structure of [4-(2-meth­­oxy­phen­yl)-3-methyl-1-phenyl-6-tri­fluoro­methyl-1H-pyrazolo­[3,4-b]pyridin-5-yl](thio­phen-2-yl)methanone

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cX-Ray Diffraction Facility, MIT Department of Chemistry, 77 Massachusetts Avenue, Building 2, Room 325, Cambridge, MA, 02139-4307, USA
*Correspondence e-mail: mailtorvkk@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 7 July 2014; accepted 29 July 2014; online 6 August 2014)

The title compound, C26H18F3N3O2S, a 2-meth­oxy-substituted derivative, is closely related to its 4-methyl- and 4-chloro-substituted analogues and yet displays no structural relationships with them. The thio­phene ring is disorder free and the –CF3 group exhibits disorder, respectively, in contrast and similar to that observed in the 4-methyl- and 4-chloro-substituted derivatives. The torsion angle which defines the twist of the thio­phene ring is −69.6 (2)° (gauche) in the title compound, whereas it is anti­clinal in the 4-methyl- and 4-chloro-substituted derivatives, with respective values of 99.9 (2) and 99.3 (2)°. The absence of disorder in the thio­phene ring facilitates one of its ring C atoms to participate in the lone inter­molecular C—H⋯O hydrogen bond present in the crystal, leading to a characteristic C(5) chain graph-set motif linking mol­ecules related through glides along [010]. An intra­moleculr C—H⋯N hydrogen bond also occurs.

1. Related literature

For the biological activity of 1H-pyrazolo­[3,4-b]pyridines, see: Hardy (1984[Hardy, C. R. (1984). Adv. Heterocycl. Chem. 36, 343-409.]); Chu & Lynch (1975[Chu, I. & Lynch, B. M. (1975). J. Med. Chem. 18, 161-165.]); Ali (2009[Ali, T. E. (2009). Eur. J. Med. Chem. 44, 4385-4392.]); Wilson et al. (2013[Wilson, R., Kumar, P., Parashar, V., Vilchèze, C., Veyron-Churlet, R., Freundlich, J. S., Barnes, S. W., Walker, J. R., Szymonifka, M. J., Marchiano, E., Shenai, S., Colangeli, R., Jacobs, W. R. Jr, Neiditch, M. B., Kremer, L. & Alland, D. (2013). Nat. Chem. Biol., 9, 499-506.]); Souza et al. (2012[Souza, B. C. C., De Oliveira, T. B. D., Aquino, T. M., De Lima, M. C. A., Pitta, I. R., Galdino, S. L., Lima, E. O., Gonçalves-Silva, T., Militão, G. C. G., Scotti, L., Scotti, M. T. & Mendonça, F. J. B. Jr (2012). Acta Pharm. 62, 221-236.]). For applications of thio­phene ring systems in solar cells, see: Hara et al. (2003[Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayamaa, S. & Arakawa, H. (2003). New J. Chem. 27, 783-785.]). For related structures, see: Rajni Swamy et al. (2013[Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412-415.]). For the treatment of disorders in crystal structures, see: Müller (2009[Müller, P. (2009). Crystallogr. Rev. 15, 57-83.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H18F3N3O2S

  • Mr = 493.49

  • Monoclinic, C 2/c

  • a = 18.9343 (11) Å

  • b = 11.6347 (6) Å

  • c = 20.9800 (12) Å

  • β = 92.511 (2)°

  • V = 4617.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 301 K

  • 0.25 × 0.16 × 0.12 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.979

  • 23854 measured reflections

  • 5492 independent reflections

  • 3784 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.02

  • 5492 reflections

  • 346 parameters

  • 142 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N3 0.93 2.42 3.012 (2) 122
C11—H11⋯O1i 0.93 2.51 3.114 (3) 122
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Many polysubstituted derivatives of 1H-pyrazolo­[3,4-b]pyridine have been synthesized as potentially biologically active materials (Hardy, 1984; Chu & Lynch, 1975) and established as anti­microbial agents against bacterial and fungal strain (Ali, 2009). Thio­phenes are regarded as important building units for a variety of drugs. Recently, a new class of thio­phene compounds that kill extensively drug resistant Mycobacterium tuberculosis have been reported (Wilson et al., 2013). An evaluation of the cytotoxic activities of some thio­phene derivatives have indicated that they could be considered promising compounds for the discovery of new anti­tumor agents (Souza et al., 2012). Also, in the background of coumarin dyes being successfully used as organic dye photo-sensitizers for Dye-Sensitized-Solar-Cells (DSSC), the design of new coumarin dyes through the introduction of thio­phene moieties have shown to remarkably improve the solar cell performance (Hara et al., 2003).

The title compound, C26H18F3N3O2S, a 2-meth­oxy-substituted derivative, is closely related to its 4-methyl and 4-chloro analogues which have been earlier shown to obey the chloro-methyl exchange rule [Rajni Swamy et al., 2013] and yet displays no structural relationships. The title compound may be regarded as an example of a case where change in the nature and position of the substitution may affect intra and inter molecular inter­actions which in turn might alter the molecular geometry quite noticeably. Fig.1 shows the molecular structure of (I) showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.

The bond lengths and angles are comparable in all the three structures with deviations evident in the torsion angles related to the thio­phene group which may be attributed to the absence of disorder in the ring, unlike in the methyl- and chloro- substituted derivatives. The torsion angle C3—C4—C7—C8 which defines the twist of the thio­phene ring is –69.6 (2)° [gauche] in the title compound whereas it is anti­clinal in 4-methyl and 4-chloro derivatives with respective values of 99.9 (2)° and 99.3 (2)° (Figure 2). Correspondingly, the orientation of the carbonyl O with respect to the carbon to which the CF3 group is attached, defined by the torsion angle C5—C4—C7—O1 is –70.8 (3)° in the present compound and 98.6 (2)° and 98.8 (2)°, respectively for 4-chloro and 4-methyl analogues.

The intra­molecular distances H13···N3 and H17···N2, on either sides of the phenyl ring, involving the N3 and N2 atoms of the pyrazolo-pyridine rings are 2.416 (1)Å and 2.436 (2) Å respectively. The increased values observed for these distances in 4-methyl and 4-chloro counterparts are 2.483 (1)Å and 2.513( 1)Å which is due to the participation of the phenyl ring (atom C15) in an inter­molecular C—-H···.O hydrogen bond. The shortening of these distances in the present case is correlated to the non-participation of the phenyl ring in the hydrogen bond, which in turn has caused the associated phenyl and the fused pyrazolo-pyridine ring systems tend towards coplanarity. Thus, a C13—H13···N3 intra­molecular hydrogen bond may well be regarded as present. The same argument is invalid for considering C17—H17···N2 as a hydrogen bond since its geometry is more of sterical consequence rather than a hydrogen bonded requirement.

The absence of disorder in the thio­phene ring facilitates one of its ring C11 atom to participate in the lone inter­molecular C—H···O hydrogen bond present in the crystal. As a consequene, the thio­phene ring deviates significantly from being perpendicular to the central fused pyrazolo-pyridine ring. The C11—H11···O1 inter­action gives rise to a characteristic C(5) chain graph-set motif [Bernstein et al.,1995] which links molecules related through glides extending along [010] (Figure 3). Thus, the scheme of non-covalent inter­actions is entirely different compared to the 4-methyl and 4-chloro analogues and the significant C—H···π inter­action observed in them is absent in the present case.

Refinement top

The structure displays disorder of the CF3 group. The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints (aka Hirshfeld restraints) for anisotropic displacement parameters (Müller, 2009). The first approach to the CF3 disorder was to refine the CF3 group as freely rotating about the C5—C25 bond. The thermal ellipsoids of the six fluorine atoms form a circular toroid as expected for a pure rotation about the C—C bond, elongated in a direction approximately perpendicular to the aromatic ring plane to which the CF3 group binds. The occupancy ratio of the two components was refined freely and converged at 0.956 (3).

All hydrogen atoms except the nitro­gen bound hydrogens, were included into the model at geometrically calculated positions (C—H target distance 0.96Å for methyl hydrogen atoms, 0.93Å for all others) and refined using a riding model. The torsion angle of the methyl groups were allowed to refine. The Uiso values of all hydrogen atoms were constrained to 1.2 times Ueq (1.5 times for methyl H atoms) of the respective atom to which the hydrogen atom binds.

Synthesis and crystallization top

A mixture of 4,4,4-tri­fluoro-1-(thio­phen-2-yl)butane-1,3-dione (0.222g, 1 mmol), 2-meth­oxy benzaldehyde (0.136g, 1 mmol), 3- methyl-1-phenyl-1H-pyrazol-5-amine (0.173g, 1 mmol) in the presence of L-proline (20 mol%) in ethanol (15 ml) was stirred at 60oC for 18 hrs. After completion of the reaction (TLC), the reaction mixture was extracted with ethyl acetate (2 x 40 ml) and the residue after removal of the solvent was chromatographed over silica gel (230–400 mesh) using petroleum ether-ethyl acetate mixture (4:1 v/v), which afforded pure product as a yellow solid; Yield 82%; mp 213 °C. Yellow coloured needles were obtained from a saturated solution of the solute in petroleum ether-ethyl acetate (4:1) mixture.

Related literature top

For the biological activity of polysubstituted derivatives of 1H-pyrazolo[3,4-b]pyridine, see: Hardy (1984); Chu & Lynch (1975); Ali (2009); Wilson et al. (2013); Souza et al. (2012). For the application of thiophene ring systems in solar cells, see: Hara et al. (2003). For related structures, see: Rajni Swamy et al. (2013). For the treatment of disorders in crystal structures, see: Müller (2009). For graph-set motifs of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms and atoms of minor disorder components have been omitted for clarity.
[Figure 2] Fig. 2. Overlay of the molecular structures of (I) (blue), 4- methyl (red) and 4-chloro (green) analogues. H atoms and atoms of minor disordered components were not included in the least squares fit of the atomic positions.
[Figure 3] Fig. 3. C—H···O hydrogen bond linking molecules through chains extending infinitely along [010]. Non-participating ring atoms and groups have been omitted for clarity.
[4-(2-Methoxyphenyl)-3-methyl-1-phenyl-6-trifluoromethyl-1H-pyrazolo[3,4-b]pyridin-5-yl](thiophen-2-yl)methanone top
Crystal data top
C26H18F3N3O2SF(000) = 2032
Mr = 493.49Dx = 1.420 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.9343 (11) ÅCell parameters from 2784 reflections
b = 11.6347 (6) Åθ = 2.1–28.0°
c = 20.9800 (12) ŵ = 0.19 mm1
β = 92.511 (2)°T = 301 K
V = 4617.3 (4) Å3Needle, yellow
Z = 80.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
ω and ϕ scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.949, Tmax = 0.979k = 1315
23854 measured reflectionsl = 2727
5492 independent reflections
Refinement top
Refinement on F2142 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0601P)2 + 3.2782P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5492 reflectionsΔρmax = 0.33 e Å3
346 parametersΔρmin = 0.47 e Å3
Crystal data top
C26H18F3N3O2SV = 4617.3 (4) Å3
Mr = 493.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.9343 (11) ŵ = 0.19 mm1
b = 11.6347 (6) ÅT = 301 K
c = 20.9800 (12) Å0.25 × 0.16 × 0.12 mm
β = 92.511 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5492 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3784 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.979Rint = 0.039
23854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048142 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
5492 reflectionsΔρmin = 0.47 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30751 (9)0.60534 (13)0.20858 (9)0.0688 (5)
O20.11454 (7)0.93337 (12)0.14944 (7)0.0548 (4)
N10.30027 (8)1.00767 (14)0.01120 (7)0.0406 (4)
N20.23413 (8)1.00212 (16)0.01836 (7)0.0499 (4)
N30.36085 (7)0.91418 (13)0.10024 (7)0.0389 (3)
C10.19684 (10)0.92676 (18)0.01270 (9)0.0455 (5)
C20.23793 (9)0.88016 (16)0.06502 (8)0.0373 (4)
C30.22736 (9)0.80476 (15)0.11561 (8)0.0370 (4)
C40.28594 (9)0.78276 (15)0.15652 (8)0.0375 (4)
C50.35026 (9)0.83882 (16)0.14613 (9)0.0392 (4)
C250.41493 (11)0.8173 (2)0.18938 (11)0.0554 (5)
F10.46297 (8)0.89725 (17)0.18471 (9)0.0956 (8)0.958 (3)
F20.44581 (9)0.71752 (16)0.17541 (10)0.0964 (7)0.958 (3)
F30.39939 (8)0.80892 (16)0.25001 (7)0.0786 (6)0.958 (3)
F1A0.4098 (16)0.7207 (9)0.2222 (10)0.098 (8)0.042 (3)
F2A0.4215 (12)0.9027 (11)0.2288 (9)0.089 (8)0.042 (3)
F3A0.4718 (10)0.8067 (10)0.1573 (10)0.070 (7)0.042 (3)
C60.30449 (9)0.93290 (15)0.06141 (8)0.0359 (4)
C70.27888 (10)0.69865 (16)0.21061 (10)0.0449 (4)
C80.23554 (11)0.73371 (17)0.26263 (9)0.0455 (5)
S10.20657 (4)0.63331 (6)0.31536 (3)0.0750 (2)
C90.16353 (14)0.7348 (3)0.35569 (11)0.0755 (8)
H90.13720.71890.39110.091*
C100.17100 (13)0.8413 (2)0.33156 (10)0.0654 (6)
H100.15140.90710.34870.078*
C110.21214 (11)0.84097 (18)0.27723 (9)0.0510 (5)
H110.22220.90650.25390.061*
C120.34875 (9)1.09282 (17)0.00852 (8)0.0406 (4)
C130.41925 (10)1.08884 (18)0.01057 (10)0.0488 (5)
H130.43671.02840.03570.059*
C140.46389 (12)1.1758 (2)0.00798 (11)0.0596 (6)
H140.51141.17410.00530.072*
C150.43889 (13)1.2640 (2)0.04558 (13)0.0725 (7)
H150.46941.32130.05850.087*
C160.36868 (14)1.2678 (2)0.06417 (15)0.0842 (9)
H160.35151.32830.08930.101*
C170.32333 (12)1.1824 (2)0.04591 (12)0.0667 (7)
H170.27571.18520.05880.080*
C180.15781 (10)0.75027 (16)0.12743 (8)0.0400 (4)
C190.10172 (10)0.81792 (17)0.14666 (9)0.0440 (4)
C200.03917 (11)0.7667 (2)0.16311 (11)0.0573 (6)
H200.00190.81160.17630.069*
C210.03220 (12)0.6485 (2)0.15987 (12)0.0641 (6)
H210.00990.61440.17100.077*
C220.08657 (13)0.5807 (2)0.14044 (11)0.0613 (6)
H220.08120.50140.13800.074*
C230.14961 (11)0.63175 (17)0.12456 (10)0.0495 (5)
H230.18680.58610.11190.059*
C240.12313 (11)0.8992 (2)0.01037 (11)0.0665 (7)
H24A0.11380.93380.05140.100*
H24B0.09040.92880.01930.100*
H24C0.11770.81740.01380.100*
C260.06586 (14)1.0042 (2)0.18061 (14)0.0743 (7)
H26A0.02141.00440.15670.112*
H26B0.08401.08120.18350.112*
H26C0.05920.97510.22270.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0734 (11)0.0386 (8)0.0952 (12)0.0074 (7)0.0113 (9)0.0132 (8)
O20.0483 (8)0.0456 (8)0.0721 (10)0.0016 (6)0.0197 (7)0.0015 (7)
N10.0333 (8)0.0520 (9)0.0364 (8)0.0078 (7)0.0016 (6)0.0040 (7)
N20.0375 (9)0.0686 (11)0.0432 (9)0.0097 (8)0.0022 (7)0.0082 (8)
N30.0315 (8)0.0438 (9)0.0415 (8)0.0028 (6)0.0038 (6)0.0008 (7)
C10.0367 (10)0.0603 (12)0.0394 (10)0.0101 (9)0.0013 (8)0.0003 (9)
C20.0309 (9)0.0444 (10)0.0371 (9)0.0054 (7)0.0053 (7)0.0052 (7)
C30.0349 (9)0.0358 (9)0.0409 (9)0.0054 (7)0.0076 (7)0.0058 (7)
C40.0372 (9)0.0320 (9)0.0437 (10)0.0018 (7)0.0059 (7)0.0018 (7)
C50.0345 (9)0.0388 (9)0.0443 (10)0.0007 (7)0.0032 (7)0.0006 (7)
C250.0414 (11)0.0599 (13)0.0644 (13)0.0066 (9)0.0044 (9)0.0167 (10)
F10.0582 (10)0.1105 (14)0.1143 (15)0.0439 (10)0.0387 (9)0.0573 (12)
F20.0649 (11)0.0951 (13)0.1280 (16)0.0346 (9)0.0088 (10)0.0119 (11)
F30.0646 (9)0.1126 (15)0.0571 (8)0.0194 (9)0.0157 (7)0.0211 (8)
F1A0.098 (17)0.106 (11)0.089 (18)0.005 (15)0.005 (13)0.060 (11)
F2A0.052 (15)0.118 (12)0.093 (16)0.008 (15)0.036 (11)0.029 (11)
F3A0.025 (5)0.099 (18)0.084 (15)0.028 (11)0.011 (6)0.006 (11)
C60.0335 (9)0.0407 (9)0.0339 (8)0.0034 (7)0.0068 (7)0.0035 (7)
C70.0422 (10)0.0363 (10)0.0560 (12)0.0066 (8)0.0014 (8)0.0067 (8)
C80.0496 (11)0.0415 (11)0.0452 (10)0.0113 (8)0.0014 (8)0.0121 (8)
S10.0858 (5)0.0661 (4)0.0737 (4)0.0167 (3)0.0118 (3)0.0319 (3)
C90.0747 (17)0.104 (2)0.0486 (13)0.0226 (15)0.0098 (12)0.0209 (13)
C100.0702 (16)0.0812 (17)0.0453 (12)0.0061 (13)0.0086 (11)0.0028 (11)
C110.0610 (13)0.0492 (12)0.0433 (10)0.0064 (10)0.0069 (9)0.0045 (9)
C120.0378 (10)0.0486 (11)0.0359 (9)0.0071 (8)0.0082 (7)0.0004 (8)
C130.0396 (10)0.0526 (12)0.0546 (11)0.0029 (9)0.0067 (9)0.0088 (9)
C140.0400 (11)0.0694 (15)0.0698 (14)0.0124 (10)0.0074 (10)0.0104 (12)
C150.0577 (15)0.0693 (16)0.0910 (19)0.0201 (12)0.0091 (13)0.0257 (14)
C160.0652 (17)0.0789 (18)0.108 (2)0.0117 (14)0.0018 (15)0.0485 (17)
C170.0458 (12)0.0777 (16)0.0758 (15)0.0090 (11)0.0058 (11)0.0299 (13)
C180.0386 (10)0.0442 (10)0.0375 (9)0.0105 (8)0.0044 (7)0.0020 (7)
C190.0399 (10)0.0490 (11)0.0433 (10)0.0076 (8)0.0051 (8)0.0008 (8)
C200.0391 (11)0.0674 (15)0.0664 (14)0.0090 (10)0.0127 (10)0.0022 (11)
C210.0473 (13)0.0717 (16)0.0743 (15)0.0273 (11)0.0128 (11)0.0011 (12)
C220.0650 (15)0.0510 (13)0.0682 (14)0.0282 (11)0.0063 (11)0.0068 (11)
C230.0504 (12)0.0463 (11)0.0523 (11)0.0131 (9)0.0070 (9)0.0079 (9)
C240.0428 (12)0.0990 (19)0.0567 (13)0.0215 (12)0.0099 (10)0.0125 (12)
C260.0680 (16)0.0596 (15)0.0976 (19)0.0103 (12)0.0274 (14)0.0030 (13)
Geometric parameters (Å, º) top
O1—C71.215 (2)C10—C111.408 (3)
O2—C191.366 (2)C10—H100.9300
O2—C261.418 (3)C11—H110.9300
N1—C61.366 (2)C12—C131.378 (3)
N1—N21.374 (2)C12—C171.378 (3)
N1—C121.424 (2)C13—C141.385 (3)
N2—C11.316 (2)C13—H130.9300
N3—C51.324 (2)C14—C151.367 (3)
N3—C61.332 (2)C14—H140.9300
C1—C21.425 (3)C15—C161.370 (4)
C1—C241.492 (3)C15—H150.9300
C2—C31.398 (2)C16—C171.379 (3)
C2—C61.407 (2)C16—H160.9300
C3—C41.396 (3)C17—H170.9300
C3—C181.492 (2)C18—C231.389 (3)
C4—C51.407 (2)C18—C191.396 (3)
C4—C71.509 (3)C19—C201.383 (3)
C5—C251.512 (3)C20—C211.383 (3)
C25—F2A1.295 (12)C20—H200.9300
C25—F3A1.301 (11)C21—C221.373 (3)
C25—F11.308 (2)C21—H210.9300
C25—F31.322 (3)C22—C231.387 (3)
C25—F1A1.324 (12)C22—H220.9300
C25—F21.338 (3)C23—H230.9300
C7—C81.452 (3)C24—H24A0.9600
C8—C111.364 (3)C24—H24B0.9600
C8—S11.7153 (18)C24—H24C0.9600
S1—C91.683 (3)C26—H26A0.9600
C9—C101.349 (4)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
C19—O2—C26118.27 (16)C8—C11—H11123.8
C6—N1—N2109.85 (14)C10—C11—H11123.8
C6—N1—C12130.57 (15)C13—C12—C17120.05 (18)
N2—N1—C12119.19 (15)C13—C12—N1121.39 (17)
C1—N2—N1107.80 (15)C17—C12—N1118.53 (17)
C5—N3—C6114.23 (15)C12—C13—C14119.3 (2)
N2—C1—C2110.39 (16)C12—C13—H13120.4
N2—C1—C24119.79 (18)C14—C13—H13120.4
C2—C1—C24129.78 (18)C15—C14—C13120.7 (2)
C3—C2—C6118.23 (16)C15—C14—H14119.6
C3—C2—C1137.08 (16)C13—C14—H14119.6
C6—C2—C1104.64 (15)C14—C15—C16119.7 (2)
C4—C3—C2116.46 (15)C14—C15—H15120.2
C4—C3—C18120.20 (16)C16—C15—H15120.2
C2—C3—C18123.33 (16)C15—C16—C17120.4 (2)
C3—C4—C5119.31 (16)C15—C16—H16119.8
C3—C4—C7119.15 (15)C17—C16—H16119.8
C5—C4—C7121.54 (16)C12—C17—C16119.8 (2)
N3—C5—C4125.40 (17)C12—C17—H17120.1
N3—C5—C25113.67 (16)C16—C17—H17120.1
C4—C5—C25120.92 (17)C23—C18—C19119.18 (17)
F2A—C25—F3A110.1 (10)C23—C18—C3120.83 (17)
F1—C25—F3108.0 (2)C19—C18—C3119.79 (16)
F2A—C25—F1A109.1 (11)O2—C19—C20124.45 (19)
F3A—C25—F1A105.6 (11)O2—C19—C18115.52 (16)
F1—C25—F2106.8 (2)C20—C19—C18119.99 (19)
F3—C25—F2105.34 (18)C21—C20—C19119.8 (2)
F2A—C25—C5108.0 (12)C21—C20—H20120.1
F3A—C25—C5111.9 (12)C19—C20—H20120.1
F1—C25—C5112.64 (17)C22—C21—C20121.0 (2)
F3—C25—C5112.41 (17)C22—C21—H21119.5
F1A—C25—C5112.1 (15)C20—C21—H21119.5
F2—C25—C5111.24 (19)C21—C22—C23119.3 (2)
N3—C6—N1126.45 (15)C21—C22—H22120.3
N3—C6—C2126.26 (16)C23—C22—H22120.3
N1—C6—C2107.28 (15)C22—C23—C18120.7 (2)
O1—C7—C8123.01 (18)C22—C23—H23119.7
O1—C7—C4119.93 (18)C18—C23—H23119.7
C8—C7—C4117.04 (16)C1—C24—H24A109.5
C11—C8—C7128.73 (17)C1—C24—H24B109.5
C11—C8—S1111.23 (15)H24A—C24—H24B109.5
C7—C8—S1120.04 (15)C1—C24—H24C109.5
C9—S1—C891.27 (11)H24A—C24—H24C109.5
C10—C9—S1113.26 (19)H24B—C24—H24C109.5
C10—C9—H9123.4O2—C26—H26A109.5
S1—C9—H9123.4O2—C26—H26B109.5
C9—C10—C11111.8 (2)H26A—C26—H26B109.5
C9—C10—H10124.1O2—C26—H26C109.5
C11—C10—H10124.1H26A—C26—H26C109.5
C8—C11—C10112.40 (19)H26B—C26—H26C109.5
C6—N1—N2—C10.8 (2)C3—C4—C7—O1108.7 (2)
C12—N1—N2—C1172.79 (16)C5—C4—C7—O170.8 (3)
N1—N2—C1—C20.5 (2)C3—C4—C7—C869.6 (2)
N1—N2—C1—C24177.61 (19)C5—C4—C7—C8110.8 (2)
N2—C1—C2—C3175.6 (2)O1—C7—C8—C11165.9 (2)
C24—C1—C2—C36.5 (4)C4—C7—C8—C1115.8 (3)
N2—C1—C2—C61.5 (2)O1—C7—C8—S114.5 (3)
C24—C1—C2—C6176.4 (2)C4—C7—C8—S1163.82 (14)
C6—C2—C3—C43.8 (2)C11—C8—S1—C90.30 (18)
C1—C2—C3—C4179.4 (2)C7—C8—S1—C9179.34 (18)
C6—C2—C3—C18175.34 (16)C8—S1—C9—C100.9 (2)
C1—C2—C3—C181.5 (3)S1—C9—C10—C111.3 (3)
C2—C3—C4—C51.9 (2)C7—C8—C11—C10180.0 (2)
C18—C3—C4—C5177.30 (16)S1—C8—C11—C100.4 (2)
C2—C3—C4—C7177.68 (16)C9—C10—C11—C81.0 (3)
C18—C3—C4—C73.2 (2)C6—N1—C12—C1320.4 (3)
C6—N3—C5—C41.6 (3)N2—N1—C12—C13167.57 (18)
C6—N3—C5—C25179.31 (16)C6—N1—C12—C17157.6 (2)
C3—C4—C5—N31.0 (3)N2—N1—C12—C1714.4 (3)
C7—C4—C5—N3179.50 (17)C17—C12—C13—C140.3 (3)
C3—C4—C5—C25180.00 (18)N1—C12—C13—C14177.73 (19)
C7—C4—C5—C250.5 (3)C12—C13—C14—C150.9 (4)
N3—C5—C25—F2A78.0 (6)C13—C14—C15—C161.2 (4)
C4—C5—C25—F2A101.2 (6)C14—C15—C16—C170.9 (5)
N3—C5—C25—F3A43.4 (6)C13—C12—C17—C160.1 (4)
C4—C5—C25—F3A137.5 (5)N1—C12—C17—C16178.1 (2)
N3—C5—C25—F117.1 (3)C15—C16—C17—C120.2 (5)
C4—C5—C25—F1162.1 (2)C4—C3—C18—C2363.7 (2)
N3—C5—C25—F3139.40 (19)C2—C3—C18—C23117.2 (2)
C4—C5—C25—F339.7 (3)C4—C3—C18—C19111.1 (2)
N3—C5—C25—F1A161.8 (5)C2—C3—C18—C1968.0 (2)
C4—C5—C25—F1A19.0 (6)C26—O2—C19—C2010.7 (3)
N3—C5—C25—F2102.7 (2)C26—O2—C19—C18167.4 (2)
C4—C5—C25—F278.1 (2)C23—C18—C19—O2178.74 (17)
C5—N3—C6—N1178.56 (17)C3—C18—C19—O23.9 (3)
C5—N3—C6—C20.6 (3)C23—C18—C19—C200.6 (3)
N2—N1—C6—N3178.99 (17)C3—C18—C19—C20174.29 (19)
C12—N1—C6—N38.4 (3)O2—C19—C20—C21178.6 (2)
N2—N1—C6—C21.7 (2)C18—C19—C20—C210.6 (3)
C12—N1—C6—C2170.89 (17)C19—C20—C21—C220.1 (4)
C3—C2—C6—N33.4 (3)C20—C21—C22—C230.7 (4)
C1—C2—C6—N3178.80 (17)C21—C22—C23—C180.8 (3)
C3—C2—C6—N1175.90 (15)C19—C18—C23—C220.1 (3)
C1—C2—C6—N11.87 (19)C3—C18—C23—C22174.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N30.932.423.012 (2)122
C11—H11···O1i0.932.513.114 (3)122
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N30.932.423.012 (2)121.9
C11—H11···O1i0.932.513.114 (3)122.4
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and Professor S. Perumal for useful discussions.

References

First citationAli, T. E. (2009). Eur. J. Med. Chem. 44, 4385–4392.  Web of Science CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, I. & Lynch, B. M. (1975). J. Med. Chem. 18, 161–165.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayamaa, S. & Arakawa, H. (2003). New J. Chem. 27, 783–785.  Web of Science CrossRef CAS Google Scholar
First citationHardy, C. R. (1984). Adv. Heterocycl. Chem. 36, 343–409.  CrossRef CAS Web of Science Google Scholar
First citationMüller, P. (2009). Crystallogr. Rev. 15, 57–83.  Google Scholar
First citationRajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, B. C. C., De Oliveira, T. B. D., Aquino, T. M., De Lima, M. C. A., Pitta, I. R., Galdino, S. L., Lima, E. O., Gonçalves-Silva, T., Militão, G. C. G., Scotti, L., Scotti, M. T. & Mendonça, F. J. B. Jr (2012). Acta Pharm. 62, 221–236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, R., Kumar, P., Parashar, V., Vilchèze, C., Veyron-Churlet, R., Freundlich, J. S., Barnes, S. W., Walker, J. R., Szymonifka, M. J., Marchiano, E., Shenai, S., Colangeli, R., Jacobs, W. R. Jr, Neiditch, M. B., Kremer, L. & Alland, D. (2013). Nat. Chem. Biol., 9, 499–506.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o974-o975
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds