organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of anilazine

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 11 July 2014; accepted 16 July 2014; online 1 August 2014)

The title compound [systematic name: 4,6-di­chloro-N-(2-chloro­phen­yl)-1,3,5-triazin-2-amine], C9H5Cl3N4, is a triazine fungicide. The dihedral angle between the planes of the triazine and benzene rings is 4.04 (8)°. In the crystal, two weak C—H⋯N hydrogen bonds and short Cl⋯Cl contacts [3.4222 (4) Å] link adjacent mol­ecules, forming two-dimensional networks parellel to the (112) plane. The planes are linked by weak inter­molecular ππ inter­actions [3.6428 (5) and 3.6490 (5) Å], resulting in a three-dimensional architecture.

1. Related literature

For information on the fungicidal properties of the title compound, see: Couture & Sutton (1978[Couture, L. & Sutton, J. C. (1978). Can. J. Plant Sci. 58, 311-317.]); Mercan & Inam (2008[Mercan, H. & Inam, R. (2008). Clean Air Soil Water, 36, 913-919.]). For a related structure, see: Zeng et al. (2005[Zeng, T., Dong, C.-M. & Shu, X.-G. (2005). Acta Cryst. E61, o2334-o2335.])

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H5Cl3N4

  • Mr = 275.52

  • Triclinic, [P \overline 1]

  • a = 7.2491 (9) Å

  • b = 7.9910 (9) Å

  • c = 10.5039 (13) Å

  • α = 111.954 (6)°

  • β = 106.411 (6)°

  • γ = 90.111 (6)°

  • V = 537.38 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 173 K

  • 0.76 × 0.23 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.573, Tmax = 0.907

  • 8699 measured reflections

  • 2086 independent reflections

  • 1877 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.07

  • 2086 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.95 2.64 3.568 (3) 165
C8—H8⋯N2ii 0.95 2.71 3.605 (3) 158
Symmetry codes: (i) x+1, y, z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Anilazine, C9H5Cl3N4, is a triazine fungicide used in controlling fungus diseases which attack lawns and turf, cereals, coffee, and a wide variety of vegetables and other crops. It is also used for the control of potato and tomato leaf spots (Couture & Sutton, 1978, Mercan & Inam, 2008). However, until now its crystal structure has not been reported.

In this compound (Fig. 1), the dihedral angle between dichloro phenyl ring and chlorophenyl phenyl ring is 4.04 (8)°. All bond lengths and bond angles are normal and comparable to those observed in a similar triazine fungicide structure, N-(4,6-Dichloro-1,3,5-triazin-2-yl)aniline(diclofop methyl) (Zeng et al., 2005).

In the crystal structure (Fig. 2), two C—H··· N hydrogen bonds are observed (Table 1), forming two-dimensional networks parelle to (112) plane. The planes are linked by weak intermolecular ππ interactions [Cg1···Cgiii , 3.6428 (5) and Cg1···Cg2iv, 3.6490 (5) Å], resulting in a three-dimensional architecture (Cg1 and Cg2 are the centroid of the N1···C3 and C4···C9 rings, respectively). In addition, a short Cl···Cl contact [Cl1···Cl1v, 3.4222 (4) Å] is present [for symmetry codes: (iii), -x + 1, -y+1, -z + 1, (iv), -x + 2, -y+1, -z + 1, and (v), x, y+1, -z].

Related literature top

For information on the fungicidal properties of the title compound, see: Couture et al. (1978); Mercan & Inam (2008). For a related structure, see: Zeng et al. (2005)

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CHCl3 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound with C—H···N hydrogen bonds and short Cl···Cl contacts shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity, except H atoms of hydrogen bonds.
4,6-Dichloro-N-(2-chlorophenyl)-1,3,5-triazin-2-amine top
Crystal data top
C9H5Cl3N4Z = 2
Mr = 275.52F(000) = 276
Triclinic, P1Dx = 1.703 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2491 (9) ÅCell parameters from 4910 reflections
b = 7.9910 (9) Åθ = 2.8–28.4°
c = 10.5039 (13) ŵ = 0.83 mm1
α = 111.954 (6)°T = 173 K
β = 106.411 (6)°Plate, colourless
γ = 90.111 (6)°0.76 × 0.23 × 0.12 mm
V = 537.38 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.573, Tmax = 0.907k = 99
8699 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3274P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H5Cl3N4γ = 90.111 (6)°
Mr = 275.52V = 537.38 (11) Å3
Triclinic, P1Z = 2
a = 7.2491 (9) ÅMo Kα radiation
b = 7.9910 (9) ŵ = 0.83 mm1
c = 10.5039 (13) ÅT = 173 K
α = 111.954 (6)°0.76 × 0.23 × 0.12 mm
β = 106.411 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1877 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.907Rint = 0.021
8699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2086 reflectionsΔρmin = 0.23 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47189 (10)0.95710 (7)0.24807 (6)0.05066 (19)
Cl20.39173 (9)0.25864 (7)0.08297 (5)0.04410 (17)
Cl31.07091 (9)0.84421 (8)0.85361 (6)0.0551 (2)
N10.4406 (2)0.6089 (2)0.17713 (17)0.0349 (4)
N20.6364 (3)0.7946 (2)0.41465 (18)0.0352 (4)
N30.5964 (2)0.4720 (2)0.33916 (17)0.0316 (4)
N40.7900 (3)0.6655 (2)0.56838 (18)0.0347 (4)
H4N0.82740.78030.62640.042*
C10.5218 (3)0.7666 (3)0.2854 (2)0.0347 (5)
C20.6700 (3)0.6401 (3)0.4365 (2)0.0306 (4)
C30.4865 (3)0.4707 (3)0.2148 (2)0.0317 (4)
C40.8659 (3)0.5413 (3)0.6295 (2)0.0307 (4)
C51.0003 (3)0.6117 (3)0.7676 (2)0.0362 (5)
C61.0775 (3)0.5011 (3)0.8385 (2)0.0425 (5)
H61.16610.55210.93320.051*
C71.0244 (3)0.3153 (3)0.7702 (3)0.0452 (6)
H71.07670.23800.81810.054*
C80.8961 (3)0.2422 (3)0.6332 (2)0.0403 (5)
H80.86190.11430.58620.048*
C90.8157 (3)0.3542 (3)0.5627 (2)0.0362 (5)
H90.72600.30230.46840.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0751 (4)0.0358 (3)0.0427 (3)0.0136 (3)0.0125 (3)0.0211 (2)
Cl20.0546 (4)0.0341 (3)0.0310 (3)0.0005 (2)0.0021 (2)0.0101 (2)
Cl30.0551 (4)0.0449 (3)0.0403 (3)0.0067 (3)0.0071 (3)0.0055 (2)
N10.0384 (10)0.0364 (9)0.0292 (9)0.0060 (7)0.0056 (7)0.0155 (7)
N20.0398 (10)0.0328 (9)0.0315 (9)0.0042 (7)0.0070 (8)0.0137 (7)
N30.0326 (9)0.0330 (8)0.0274 (8)0.0040 (7)0.0047 (7)0.0131 (7)
N40.0389 (10)0.0306 (8)0.0269 (8)0.0012 (7)0.0015 (7)0.0090 (7)
C10.0400 (12)0.0339 (10)0.0346 (11)0.0075 (9)0.0125 (9)0.0173 (9)
C20.0301 (10)0.0337 (10)0.0270 (10)0.0031 (8)0.0074 (8)0.0116 (8)
C30.0322 (10)0.0333 (10)0.0284 (10)0.0040 (8)0.0074 (8)0.0120 (8)
C40.0278 (10)0.0376 (10)0.0257 (9)0.0038 (8)0.0061 (8)0.0129 (8)
C50.0319 (11)0.0419 (11)0.0291 (10)0.0005 (9)0.0056 (9)0.0102 (9)
C60.0330 (11)0.0604 (14)0.0309 (11)0.0038 (10)0.0017 (9)0.0203 (10)
C70.0400 (13)0.0568 (14)0.0462 (13)0.0113 (11)0.0074 (10)0.0322 (11)
C80.0416 (12)0.0390 (11)0.0413 (12)0.0052 (9)0.0096 (10)0.0190 (10)
C90.0360 (11)0.0376 (11)0.0306 (11)0.0028 (9)0.0031 (9)0.0135 (9)
Geometric parameters (Å, º) top
Cl1—C11.724 (2)N4—H4N0.8800
Cl2—C31.722 (2)C4—C91.389 (3)
Cl3—C51.735 (2)C4—C51.399 (3)
N1—C31.319 (3)C5—C61.382 (3)
N1—C11.332 (3)C6—C71.383 (3)
N2—C11.311 (3)C6—H60.9500
N2—C21.348 (3)C7—C81.375 (3)
N3—C31.320 (2)C7—H70.9500
N3—C21.340 (2)C8—C91.394 (3)
N4—C21.351 (2)C8—H80.9500
N4—C41.407 (2)C9—H90.9500
C3—N1—C1111.18 (17)C5—C4—N4117.55 (18)
C1—N2—C2113.30 (17)C6—C5—C4121.7 (2)
C3—N3—C2112.78 (17)C6—C5—Cl3118.75 (16)
C2—N4—C4131.55 (17)C4—C5—Cl3119.51 (16)
C2—N4—H4N114.2C5—C6—C7119.3 (2)
C4—N4—H4N114.2C5—C6—H6120.3
N2—C1—N1128.42 (18)C7—C6—H6120.3
N2—C1—Cl1116.36 (15)C8—C7—C6120.1 (2)
N1—C1—Cl1115.21 (15)C8—C7—H7120.0
N3—C2—N2125.21 (17)C6—C7—H7120.0
N3—C2—N4120.43 (17)C7—C8—C9120.6 (2)
N2—C2—N4114.35 (17)C7—C8—H8119.7
N1—C3—N3129.10 (19)C9—C8—H8119.7
N1—C3—Cl2115.58 (15)C4—C9—C8120.32 (19)
N3—C3—Cl2115.32 (15)C4—C9—H9119.8
C9—C4—C5117.95 (18)C8—C9—H9119.8
C9—C4—N4124.50 (18)
C2—N2—C1—N11.0 (3)C2—N4—C4—C95.2 (4)
C2—N2—C1—Cl1179.78 (15)C2—N4—C4—C5175.2 (2)
C3—N1—C1—N21.1 (3)C9—C4—C5—C61.9 (3)
C3—N1—C1—Cl1179.87 (15)N4—C4—C5—C6177.6 (2)
C3—N3—C2—N21.0 (3)C9—C4—C5—Cl3178.72 (16)
C3—N3—C2—N4178.20 (18)N4—C4—C5—Cl31.7 (3)
C1—N2—C2—N30.2 (3)C4—C5—C6—C71.5 (3)
C1—N2—C2—N4179.11 (18)Cl3—C5—C6—C7179.08 (18)
C4—N4—C2—N32.5 (3)C5—C6—C7—C80.0 (4)
C4—N4—C2—N2176.9 (2)C6—C7—C8—C91.1 (4)
C1—N1—C3—N30.0 (3)C5—C4—C9—C80.8 (3)
C1—N1—C3—Cl2179.43 (15)N4—C4—C9—C8178.8 (2)
C2—N3—C3—N11.0 (3)C7—C8—C9—C40.7 (3)
C2—N3—C3—Cl2178.47 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.952.643.568 (3)165
C8—H8···N2ii0.952.713.605 (3)158
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.952.643.568 (3)165.2
C8—H8···N2ii0.952.713.605 (3)158.2
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCouture, L. & Sutton, J. C. (1978). Can. J. Plant Sci. 58, 311–317.  CrossRef CAS Google Scholar
First citationMercan, H. & Inam, R. (2008). Clean Air Soil Water, 36, 913–919.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, T., Dong, C.-M. & Shu, X.-G. (2005). Acta Cryst. E61, o2334–o2335.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds