metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m322-m323

Crystal structure of catena-poly[[aqua(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)cobalt(II)]-μ-cyanido-κ2N:C-[dicyanidoplatinum(II)]-μ-cyanido-κ2C:N]

aUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@southalabama.edu

Edited by P. C. Healy, Griffith University, Australia (Received 20 July 2014; accepted 29 July 2014; online 6 August 2014)

The title compound, [Co(C15H11N3)(H2O){Pt(CN)4}]n, is a one-dimensional coordination polymer formed under hydro­thermal reaction conditions. The CoII site has sixfold coordination with a distorted octa­hedral geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. The compound contains twofold rotation symmetry about its CoII ion, the water molecule and the terpyridine ligand, and the PtII atom resides on an inversion center. trans-Bridging by the tetra­cyanidoplatinate(II) anions links the CoII cations, forming chains parallel to [-101]. Additionally, each CoII atom is coordin­ated by one water mol­ecule and one tridentate 2,2′:6′,2′′-terpyridine ligand. O—H⋯N hydrogen-bonding inter­actions are found between adjacent chains and help to consolidate the crystal packing. In addition, relatively weak ππ stacking inter­actions exist between the terpyridine ligands of adjacent chains [inter­planar distance = 3.464 (7) Å]. No Pt⋯Pt inter­actions are observed in the structure.

1. Related literature

For structural studies on related coordination compounds, see: Maynard et al. (2008[Maynard, B., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. (2008). Inorg. Chem. 47, 1895-1897.]); Smith et al. (2012[Smith, P. A., Crawford, C., Beedoe, N., Assefa, Z. & Sykora, R. E. (2012). Inorg. Chem. 51, 12230-12241.]); Guo et al. (2012[Guo, J., Ma, J.-F., Li, J.-J., Yang, J. & Xing, S.-X. (2012). Cryst. Growth Des. 12, 6074-6082.]); Kobayashi et al. (2013[Kobayashi, M., Savard, D., Geisheimer, A. R., Sakai, K. & Leznoff, D. B. (2013). Inorg. Chem. 52, 4842-4852.]). For characterization of tetra­cyanido­platinate compounds, see: Gliemann & Yersin (1985[Gliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87-153.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Co(C15H11N3)(H2O){Pt(CN)4}]

  • Mr = 609.38

  • Monoclinic, C 2/c

  • a = 15.7272 (7) Å

  • b = 11.5164 (5) Å

  • c = 11.4048 (5) Å

  • β = 99.005 (4)°

  • V = 2040.20 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.69 mm−1

  • T = 180 K

  • 0.56 × 0.10 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.264, Tmax = 1.000

  • 4788 measured reflections

  • 1861 independent reflections

  • 1262 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.02

  • 1861 reflections

  • 138 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.42 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.85 (1) 1.93 (2) 2.764 (8) 168 (9)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), results from ongoing research concerning the synthesis of bimetallic coordination polymers containing cyano­metallates. Compound I is similar to several previously reported compounds in that it contains one-dimensional [Co(C15H11N3)(H2O)(Pt(CN)4)]n chains reminiscent of those found in [Co(C15H11N3)(Pt(SCN)4] (Kobayashi et al., 2013). Several related lanthanide coordination polymers Ln(C15H11N3)(H2O)2(NO3)[Pt(CN)4].CH3CN (Ln = Eu (Maynard et al., 2008) or Ln = Tb (Smith et al., 2012)) with tetra­cyano­platinate(II) are also known. The major structural differences between these latter structure types can be attributed to the higher coordination number that the Ln3+ ions typically adopt, relative to Co2+ (Guo et al., 2012).

The neutral, one-dimensional [Co(C15H11N3)(H2O)(Pt(CN)4)] chains in the structure of I are illustrated in Figure 1 and a thermal ellipsoid plot of the local metal ion environments are illustrated in Figure 2. The chains are formed by the linkage of the Co2+ cations by trans-bridging tetra­cyano­platinate anions. These are reminiscent of the chains found in the bimetallic compound [Mn(C15H11N3)(Pt(SCN)4] (Kobayashi, et al., 2013), where similar bridging of the Mn2+ ion by the [(Pt(SCN)4] anions are observed. The coordination of the Co site is six-fold and can be described as a distorted [CoON5] o­cta­hedron while the Pt site has a four-fold coordination in a nearly regular square planar geometry. The compound contains two fold symmetry about its CoII ion and the PtII resides on an inversion center. The five nitro­gen atoms in the inner sphere of the Co2+ cations result from the coordination of one tridentate terpyridine ligand and two N-bound TCP anions while the oxygen atom is a result of one coordinated water molecule. The Co—N, Co—O, and Pt—C bond distances are not extraordinary.

The predominant inter-chain features in I include inter-chain hydrogen bonding inter­actions, see hydrogen bond table, and also weak π-stacking inter­actions (3.464 (7) Å). Also worth noting is the orientation of the coordinated tpy molecules in the one-dimensional chains; viewing parallel to the chain reveals that these molecules are located on alternating sides of the chains. A similar situation also occurs in [Eu(C15H11N3)(H2O)2(NO3)Pt(CN)4].CH3CN (Maynard et al., 2008) while [Tb(C15H11N3)(H2O)2(NO3)Pt(CN)4].3.5H2O (Smith, et al., 2012) contains one-dimensional chains where all of the terpyridine molecules reside on a single side of the chain. There are not any platinophilic (Pt···Pt) inter­actions in this compound as observed in many previous tetra­cyano­platinate salts (Gliemann & Yersin, 1985).

Synthesis and Crystallization top

The title compound was synthesized by first mixing aqueous solutions of 0.05 M CoClO4 and 0.05 M K2[Pt(CN)4] (500 µL each). A pink precipitate was immediately formed which was then separated from the mother liquor by centrifugation followed by decantation. The resultant pink solid was placed in an oven at 110 °C for approximately one hour during which time it underwent a color transformation from pink to violet purple. A few milligrams of the powder was placed into a 23 mL teflon-lined Parr reaction vessel with 500 µL of deionized water. The reaction vessel was then heated in a box oven at 110 °C for 72 hours. During this process, impregnated 2,2':6',2"-terpyridine leached out of the teflon liner into the reaction. Once the reaction vessel had cooled pink needle-shaped single crystals of the title compound were isolated.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for ring hydrogens and Uiso(H) = 1.5Ueq(O) and O—H distances of 0.85 Å for hydrogen atoms of the water.

Related literature top

For structural studies on related coordination compounds, see: Maynard et al. (2008); Smith et al. (2012); Guo et al. (2012); Kobayashi et al. (2013). For characterization of tetracyanoplatinate compounds, see: Gliemann & Yersin (1985).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A ball-and-stick representation of the one-dimensional chains in (I).
[Figure 2] Fig. 2. A thermal ellipsoid plot of (I) with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. H-atoms are shown as spheres of arbitrary size. Symmetry codes: (i) -x + 3/2, -y + 1/2, -z; (ii) -x + 1, y, -z + 1/2.
catena-Poly[[aqua(2,2':6',2''-terpyridine-κ3N,N',N'')cobalt(II)]-µ-cyanido-κ2N:C-[dicyanidoplatinum(II)]-µ-cyanido-κ2C:N] top
Crystal data top
[CoPt(CN)4(C15H11N3)(H2O)]F(000) = 1156
Mr = 609.38Dx = 1.984 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.7272 (7) ÅCell parameters from 1258 reflections
b = 11.5164 (5) Åθ = 4.0–28.1°
c = 11.4048 (5) ŵ = 7.69 mm1
β = 99.005 (4)°T = 180 K
V = 2040.20 (16) Å3Needle, clear pink
Z = 40.56 × 0.10 × 0.08 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
1861 independent reflections
Radiation source: Enhance (Mo) X-ray Source1262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0514 pixels mm-1θmax = 25.3°, θmin = 3.5°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1313
Tmin = 0.264, Tmax = 1.000l = 1113
4788 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0367P)2]
where P = (Fo2 + 2Fc2)/3
1861 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 1.42 e Å3
4 restraintsΔρmin = 1.52 e Å3
Crystal data top
[CoPt(CN)4(C15H11N3)(H2O)]V = 2040.20 (16) Å3
Mr = 609.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.7272 (7) ŵ = 7.69 mm1
b = 11.5164 (5) ÅT = 180 K
c = 11.4048 (5) Å0.56 × 0.10 × 0.08 mm
β = 99.005 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
1861 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1262 reflections with I > 2σ(I)
Tmin = 0.264, Tmax = 1.000Rint = 0.041
4788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.42 e Å3
1861 reflectionsΔρmin = 1.52 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.75000.75000.50000.02646 (16)
Co10.50000.75946 (13)0.75000.0265 (3)
N10.6140 (4)0.7638 (6)0.6711 (6)0.0350 (16)
C10.6649 (5)0.7601 (6)0.6125 (6)0.0281 (17)
O10.50000.9327 (7)0.75000.043 (2)
H10.460 (3)0.9754 (17)0.715 (7)0.064*
N20.6401 (4)0.9291 (7)0.3338 (6)0.0447 (18)
C20.6790 (5)0.8641 (8)0.3938 (7)0.0365 (19)
N40.50000.5778 (7)0.75000.0274 (19)
C70.5912 (4)0.6000 (7)0.9333 (7)0.0304 (17)
C90.5471 (5)0.4041 (7)0.8438 (7)0.039 (2)
H90.57850.36410.90700.047*
C40.6723 (5)0.7523 (8)1.0967 (7)0.044 (2)
H40.69830.80601.15180.052*
N30.5766 (4)0.7150 (6)0.9158 (5)0.0310 (15)
C60.6475 (4)0.5594 (7)1.0321 (6)0.038 (2)
H60.65700.48021.04260.046*
C80.5467 (5)0.5248 (7)0.8418 (7)0.037 (2)
C50.6885 (5)0.6369 (9)1.1133 (7)0.046 (2)
H50.72670.61101.17860.055*
C30.6164 (5)0.7895 (8)0.9965 (7)0.040 (2)
H30.60650.86860.98540.047*
C100.50000.3445 (11)0.75000.040 (3)
H100.50000.26370.75000.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0223 (2)0.0295 (3)0.0281 (2)0.00024 (18)0.00559 (15)0.0007 (2)
Co10.0227 (7)0.0306 (9)0.0266 (7)0.0000.0054 (5)0.000
N10.030 (4)0.042 (5)0.034 (3)0.004 (3)0.008 (3)0.008 (3)
C10.023 (4)0.032 (5)0.029 (4)0.000 (3)0.002 (3)0.008 (4)
O10.028 (5)0.032 (5)0.064 (6)0.0000.005 (4)0.000
N20.038 (4)0.048 (5)0.047 (4)0.009 (4)0.002 (3)0.000 (4)
C20.032 (4)0.040 (5)0.036 (4)0.004 (4)0.000 (3)0.000 (4)
N40.028 (5)0.020 (5)0.035 (5)0.0000.007 (4)0.000
C70.026 (4)0.030 (5)0.035 (4)0.007 (3)0.008 (3)0.004 (4)
C90.034 (4)0.036 (5)0.044 (5)0.002 (4)0.003 (3)0.004 (4)
C40.044 (5)0.056 (6)0.030 (4)0.003 (5)0.004 (3)0.010 (4)
N30.031 (4)0.034 (4)0.028 (3)0.002 (3)0.006 (3)0.000 (3)
C60.037 (5)0.036 (5)0.038 (5)0.007 (4)0.001 (3)0.008 (4)
C80.029 (4)0.042 (5)0.039 (5)0.004 (4)0.005 (3)0.004 (4)
C50.041 (5)0.056 (6)0.037 (5)0.009 (4)0.005 (4)0.002 (5)
C30.045 (5)0.039 (5)0.035 (5)0.003 (4)0.008 (4)0.003 (4)
C100.032 (6)0.026 (7)0.060 (8)0.0000.007 (5)0.000
Geometric parameters (Å, º) top
Pt1—C11.997 (8)C7—C61.400 (10)
Pt1—C1i1.997 (8)C7—C81.450 (11)
Pt1—C22.005 (8)C9—H90.9300
Pt1—C2i2.005 (8)C9—C81.391 (11)
Co1—N12.128 (6)C9—C101.384 (10)
Co1—N1ii2.128 (6)C4—H40.9300
Co1—O11.995 (8)C4—C51.360 (12)
Co1—N42.092 (9)C4—C31.395 (11)
Co1—N3ii2.139 (6)N3—C31.340 (10)
Co1—N32.139 (6)C6—H60.9300
N1—C11.122 (10)C6—C51.372 (11)
O1—H10.849 (7)C5—H50.9300
N2—C21.128 (10)C3—H30.9300
N4—C81.329 (8)C10—C9ii1.384 (9)
N4—C8ii1.329 (8)C10—H100.9300
C7—N31.353 (9)
C1—Pt1—C1i179.999 (2)N3—C7—C6121.1 (7)
C1—Pt1—C2i90.9 (3)N3—C7—C8115.3 (7)
C1i—Pt1—C2i89.1 (3)C6—C7—C8123.6 (8)
C1i—Pt1—C290.9 (3)C8—C9—H9120.6
C1—Pt1—C289.1 (3)C10—C9—H9120.6
C2i—Pt1—C2179.998 (1)C10—C9—C8118.8 (8)
N1—Co1—N1ii177.3 (4)C5—C4—H4120.2
N1—Co1—N3ii91.5 (2)C5—C4—C3119.6 (8)
N1—Co1—N389.1 (2)C3—C4—H4120.2
N1ii—Co1—N391.5 (2)C7—N3—Co1115.1 (5)
N1ii—Co1—N3ii89.1 (2)C3—N3—Co1126.3 (6)
O1—Co1—N1ii88.67 (18)C3—N3—C7118.3 (7)
O1—Co1—N188.67 (19)C7—C6—H6120.1
O1—Co1—N4180.000 (3)C5—C6—C7119.8 (8)
O1—Co1—N3ii103.85 (18)C5—C6—H6120.1
O1—Co1—N3103.85 (18)N4—C8—C7115.9 (8)
N4—Co1—N191.33 (18)N4—C8—C9118.3 (8)
N4—Co1—N1ii91.33 (19)C9—C8—C7125.8 (7)
N4—Co1—N3ii76.15 (18)C4—C5—C6118.9 (8)
N4—Co1—N376.15 (18)C4—C5—H5120.6
N3—Co1—N3ii152.3 (4)C6—C5—H5120.6
C1—N1—Co1168.1 (6)C4—C3—H3118.9
N1—C1—Pt1176.4 (6)N3—C3—C4122.2 (8)
Co1—O1—H1125.4 (14)N3—C3—H3118.9
N2—C2—Pt1179.0 (8)C9ii—C10—C9120.5 (12)
C8—N4—Co1117.4 (5)C9—C10—H10119.7
C8ii—N4—Co1117.4 (5)C9ii—C10—H10119.7
C8ii—N4—C8125.3 (10)
Co1—N4—C8—C71.2 (7)N3ii—Co1—N4—C8ii2.9 (4)
Co1—N4—C8—C9179.6 (5)N3—Co1—N4—C82.9 (4)
Co1—N3—C3—C4173.3 (6)N3—Co1—N4—C8ii177.1 (4)
N1—Co1—N4—C885.8 (4)N3ii—Co1—N3—C74.3 (5)
N1—Co1—N4—C8ii94.2 (4)N3ii—Co1—N3—C3178.1 (6)
N1ii—Co1—N4—C8ii85.8 (4)N3—C7—C6—C50.3 (11)
N1ii—Co1—N4—C894.2 (4)N3—C7—C8—N42.6 (10)
N1ii—Co1—N3—C795.3 (5)N3—C7—C8—C9175.7 (7)
N1—Co1—N3—C787.3 (5)C6—C7—N3—Co1173.3 (5)
N1ii—Co1—N3—C390.9 (6)C6—C7—N3—C31.0 (11)
N1—Co1—N3—C386.5 (6)C6—C7—C8—N4175.7 (6)
O1—Co1—N1—C1107 (3)C6—C7—C8—C96.0 (13)
O1—Co1—N3—C7175.7 (5)C8ii—N4—C8—C7178.8 (7)
O1—Co1—N3—C31.9 (6)C8ii—N4—C8—C90.4 (5)
N4—Co1—N1—C173 (3)C8—C7—N3—Co15.0 (8)
N4—Co1—N3—C74.3 (5)C8—C7—N3—C3179.4 (6)
N4—Co1—N3—C3178.1 (6)C8—C7—C6—C5178.6 (7)
C7—N3—C3—C40.4 (11)C8—C9—C10—C9ii0.4 (5)
C7—C6—C5—C41.0 (12)C5—C4—C3—N31.0 (12)
N3—Co1—N1—C1149 (3)C3—C4—C5—C61.6 (12)
N3ii—Co1—N1—C13 (3)C10—C9—C8—N40.7 (10)
N3ii—Co1—N4—C8177.1 (4)C10—C9—C8—C7179.0 (6)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2iii0.85 (1)1.93 (2)2.764 (8)168 (9)
Symmetry code: (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.849 (7)1.93 (2)2.764 (8)168 (9)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the National Science Foundation for their generous support (NSF–CAREER grant to RES, CHE-0846680).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGliemann, G. & Yersin, H. (1985). Struct. Bond. 62, 87–153.  CrossRef CAS Google Scholar
First citationGuo, J., Ma, J.-F., Li, J.-J., Yang, J. & Xing, S.-X. (2012). Cryst. Growth Des. 12, 6074–6082.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobayashi, M., Savard, D., Geisheimer, A. R., Sakai, K. & Leznoff, D. B. (2013). Inorg. Chem. 52, 4842–4852.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaynard, B., Kalachnikova, K., Whitehead, K., Assefa, Z. & Sykora, R. (2008). Inorg. Chem. 47, 1895–1897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, P. A., Crawford, C., Beedoe, N., Assefa, Z. & Sykora, R. E. (2012). Inorg. Chem. 51, 12230–12241.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m322-m323
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds