organic compounds
of ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, C14H14ClNO4, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.0142 Å) and ester planes is 18.99 (3)°. The C—O—C—Cm (m = methyl) torsion angle is −172.08 (10)°, indicating a trans conformation. In the crystal, the molecules are linked by C—H⋯O and C—H⋯N interactions, generating layers lying parallel to (101). Aromatic π-π stacking [centroid–centroid distances = 3.557 (2) and 3.703 (2)Å] links the layers into a three-dimensional network.
Keywords: crystal structure; quinoline derivatives; ester; hydrogen bonding; π–π stacking.
CCDC reference: 1016211
1. Related literature
For the synthesis and applications of quinoline derivatives, see: Wang et al. (2011); Benzerka et al. (2012); Valdez et al. (2009). For our previous work, see: Bouraiou et al. (2012); Hayour et al. (2014); Benzerka et al. (2012).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1016211
10.1107/S1600536814017309/hg5402sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017309/hg5402Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814017309/hg5402Isup3.cml
To a cold solution of NaCN (3 mmol) in absolute ethanol (15 mL), a mixture of 2-chloro-5,8-dimethoxy quinolin-3-carbaldehyde (1 mmol) and manganese dioxide (6.7 mmol) was added at 0°C, then the reaction mixture was stirred at 25°C during 3 h. After complexion, the title compound was obtained by simple filtration through a small column packed with 4 cm of celite and 3 cm of silica gel using CH2Cl2 as eluant (Valdez, et al. 2009).
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene) and Uiso(H) = 1.5 or 1.2 (carrier atom).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).C14H14ClNO4 | Z = 2 |
Mr = 295.71 | F(000) = 308 |
Triclinic, P1 | Dx = 1.479 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.512 (4) Å | Cell parameters from 4109 reflections |
b = 9.759 (5) Å | θ = 2.7–34.1° |
c = 9.811 (5) Å | µ = 0.30 mm−1 |
α = 76.071 (10)° | T = 150 K |
β = 72.021 (10)° | Prism, colorless |
γ = 86.037 (10)° | 0.25 × 0.14 × 0.12 mm |
V = 664.0 (6) Å3 |
Bruker APEXII diffractometer | 4090 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
CCD rotation images, thin slices scans | θmax = 34.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −11→11 |
Tmin = 0.690, Tmax = 0.747 | k = −15→15 |
10769 measured reflections | l = −15→15 |
5204 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3 |
5204 reflections | (Δ/σ)max = 0.001 |
184 parameters | Δρmax = 0.5 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C14H14ClNO4 | γ = 86.037 (10)° |
Mr = 295.71 | V = 664.0 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.512 (4) Å | Mo Kα radiation |
b = 9.759 (5) Å | µ = 0.30 mm−1 |
c = 9.811 (5) Å | T = 150 K |
α = 76.071 (10)° | 0.25 × 0.14 × 0.12 mm |
β = 72.021 (10)° |
Bruker APEXII diffractometer | 5204 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 4090 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.747 | Rint = 0.024 |
10769 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.5 e Å−3 |
5204 reflections | Δρmin = −0.24 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.27548 (18) | 1.02335 (11) | 0.38370 (13) | 0.0317 (2) | |
H1B | 1.3474 | 1.0184 | 0.4504 | 0.048* | |
H1A | 1.1478 | 1.0451 | 0.4304 | 0.048* | |
H1C | 1.3262 | 1.0958 | 0.2965 | 0.048* | |
C2 | 1.28321 (17) | 0.88354 (11) | 0.34275 (11) | 0.0266 (2) | |
H2A | 1.2118 | 0.8873 | 0.2747 | 0.032* | |
H2B | 1.4116 | 0.8599 | 0.2961 | 0.032* | |
C3 | 1.21881 (13) | 0.64349 (10) | 0.46758 (10) | 0.01689 (16) | |
C4 | 1.11813 (13) | 0.54830 (9) | 0.61114 (10) | 0.01547 (15) | |
C5 | 1.14674 (13) | 0.39997 (10) | 0.64961 (10) | 0.01641 (16) | |
C6 | 0.92888 (13) | 0.37156 (9) | 0.87752 (10) | 0.01595 (16) | |
C7 | 0.83649 (14) | 0.28087 (10) | 1.01633 (10) | 0.01932 (17) | |
C8 | 0.82466 (19) | 0.05352 (12) | 1.17645 (13) | 0.0316 (2) | |
H8A | 0.8799 | −0.0381 | 1.176 | 0.047* | |
H8B | 0.6908 | 0.0448 | 1.2073 | 0.047* | |
H8C | 0.8618 | 0.0943 | 1.2434 | 0.047* | |
C9 | 0.70785 (14) | 0.33822 (11) | 1.12113 (10) | 0.02025 (18) | |
H9 | 0.6474 | 0.2795 | 1.2116 | 0.024* | |
C10 | 0.66446 (13) | 0.48421 (11) | 1.09552 (10) | 0.01941 (17) | |
H10 | 0.5761 | 0.5196 | 1.1683 | 0.023* | |
C11 | 0.75286 (13) | 0.57316 (10) | 0.96332 (10) | 0.01729 (16) | |
C12 | 0.88663 (12) | 0.51757 (9) | 0.85187 (10) | 0.01559 (16) | |
C13 | 0.98519 (13) | 0.60393 (9) | 0.71557 (10) | 0.01569 (16) | |
H13 | 0.9603 | 0.7001 | 0.6955 | 0.019* | |
C14 | 0.61166 (16) | 0.78024 (12) | 1.03759 (11) | 0.0250 (2) | |
H14A | 0.4863 | 0.7439 | 1.0691 | 0.038* | |
H14B | 0.6108 | 0.8806 | 0.9999 | 0.038* | |
H14C | 0.661 | 0.7598 | 1.1196 | 0.038* | |
N1 | 1.05905 (11) | 0.31542 (8) | 0.77389 (9) | 0.01767 (15) | |
O1 | 1.20348 (11) | 0.77897 (8) | 0.47853 (8) | 0.02506 (16) | |
O2 | 0.88630 (12) | 0.14209 (8) | 1.03191 (8) | 0.02716 (17) | |
O3 | 1.30129 (11) | 0.60788 (8) | 0.35513 (8) | 0.02479 (16) | |
O4 | 0.72630 (11) | 0.71537 (8) | 0.92457 (8) | 0.02404 (16) | |
Cl1 | 1.31414 (4) | 0.31664 (3) | 0.52818 (3) | 0.02578 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0359 (6) | 0.0187 (5) | 0.0298 (5) | −0.0004 (4) | 0.0026 (5) | −0.0019 (4) |
C2 | 0.0336 (6) | 0.0190 (4) | 0.0186 (4) | −0.0029 (4) | 0.0014 (4) | 0.0003 (3) |
C3 | 0.0171 (4) | 0.0168 (4) | 0.0160 (4) | −0.0001 (3) | −0.0032 (3) | −0.0043 (3) |
C4 | 0.0161 (4) | 0.0154 (4) | 0.0144 (4) | 0.0003 (3) | −0.0030 (3) | −0.0044 (3) |
C5 | 0.0173 (4) | 0.0158 (4) | 0.0164 (4) | 0.0020 (3) | −0.0038 (3) | −0.0064 (3) |
C6 | 0.0172 (4) | 0.0150 (4) | 0.0156 (4) | −0.0006 (3) | −0.0043 (3) | −0.0040 (3) |
C7 | 0.0221 (4) | 0.0163 (4) | 0.0184 (4) | −0.0029 (3) | −0.0048 (3) | −0.0028 (3) |
C8 | 0.0421 (7) | 0.0189 (5) | 0.0245 (5) | −0.0025 (4) | −0.0018 (5) | 0.0024 (4) |
C9 | 0.0207 (4) | 0.0213 (4) | 0.0160 (4) | −0.0050 (3) | −0.0021 (3) | −0.0024 (3) |
C10 | 0.0176 (4) | 0.0231 (4) | 0.0160 (4) | −0.0005 (3) | −0.0017 (3) | −0.0060 (3) |
C11 | 0.0174 (4) | 0.0179 (4) | 0.0157 (4) | 0.0019 (3) | −0.0033 (3) | −0.0051 (3) |
C12 | 0.0153 (4) | 0.0163 (4) | 0.0144 (4) | −0.0002 (3) | −0.0030 (3) | −0.0041 (3) |
C13 | 0.0170 (4) | 0.0140 (4) | 0.0149 (4) | 0.0006 (3) | −0.0030 (3) | −0.0036 (3) |
C14 | 0.0278 (5) | 0.0267 (5) | 0.0207 (4) | 0.0105 (4) | −0.0046 (4) | −0.0120 (4) |
N1 | 0.0199 (4) | 0.0154 (3) | 0.0174 (3) | 0.0006 (3) | −0.0046 (3) | −0.0047 (3) |
O1 | 0.0331 (4) | 0.0153 (3) | 0.0183 (3) | −0.0012 (3) | 0.0037 (3) | −0.0026 (2) |
O2 | 0.0384 (4) | 0.0146 (3) | 0.0212 (3) | −0.0004 (3) | −0.0009 (3) | −0.0010 (3) |
O3 | 0.0300 (4) | 0.0243 (4) | 0.0163 (3) | −0.0032 (3) | 0.0012 (3) | −0.0075 (3) |
O4 | 0.0294 (4) | 0.0186 (3) | 0.0183 (3) | 0.0073 (3) | 0.0005 (3) | −0.0054 (3) |
Cl1 | 0.02904 (13) | 0.02190 (12) | 0.02243 (12) | 0.00813 (9) | −0.00059 (9) | −0.00934 (9) |
C1—C2 | 1.5050 (17) | C7—C9 | 1.3760 (14) |
C1—H1B | 0.96 | C8—O2 | 1.4257 (14) |
C1—H1A | 0.96 | C8—H8A | 0.96 |
C1—H1C | 0.96 | C8—H8B | 0.96 |
C2—O1 | 1.4534 (13) | C8—H8C | 0.96 |
C2—H2A | 0.97 | C9—C10 | 1.4189 (15) |
C2—H2B | 0.97 | C9—H9 | 0.93 |
C3—O3 | 1.2062 (12) | C10—C11 | 1.3722 (14) |
C3—O1 | 1.3463 (13) | C10—H10 | 0.93 |
C3—C4 | 1.4928 (13) | C11—O4 | 1.3656 (13) |
C4—C13 | 1.3796 (13) | C11—C12 | 1.4254 (13) |
C4—C5 | 1.4241 (14) | C12—C13 | 1.4068 (13) |
C5—N1 | 1.3025 (13) | C13—H13 | 0.93 |
C5—Cl1 | 1.7500 (10) | C14—O4 | 1.4301 (12) |
C6—N1 | 1.3677 (12) | C14—H14A | 0.96 |
C6—C12 | 1.4173 (14) | C14—H14B | 0.96 |
C6—C7 | 1.4286 (14) | C14—H14C | 0.96 |
C7—O2 | 1.3650 (14) | ||
C2—C1—H1B | 109.5 | H8A—C8—H8B | 109.5 |
C2—C1—H1A | 109.5 | O2—C8—H8C | 109.5 |
H1B—C1—H1A | 109.5 | H8A—C8—H8C | 109.5 |
C2—C1—H1C | 109.5 | H8B—C8—H8C | 109.5 |
H1B—C1—H1C | 109.5 | C7—C9—C10 | 122.07 (9) |
H1A—C1—H1C | 109.5 | C7—C9—H9 | 119 |
O1—C2—C1 | 106.85 (9) | C10—C9—H9 | 119 |
O1—C2—H2A | 110.4 | C11—C10—C9 | 120.01 (9) |
C1—C2—H2A | 110.4 | C11—C10—H10 | 120 |
O1—C2—H2B | 110.4 | C9—C10—H10 | 120 |
C1—C2—H2B | 110.4 | O4—C11—C10 | 126.18 (8) |
H2A—C2—H2B | 108.6 | O4—C11—C12 | 114.27 (8) |
O3—C3—O1 | 123.25 (9) | C10—C11—C12 | 119.55 (9) |
O3—C3—C4 | 126.28 (9) | C13—C12—C6 | 117.50 (8) |
O1—C3—C4 | 110.46 (8) | C13—C12—C11 | 122.18 (9) |
C13—C4—C5 | 116.02 (8) | C6—C12—C11 | 120.29 (8) |
C13—C4—C3 | 119.42 (9) | C4—C13—C12 | 121.12 (9) |
C5—C4—C3 | 124.56 (8) | C4—C13—H13 | 119.4 |
N1—C5—C4 | 125.27 (8) | C12—C13—H13 | 119.4 |
N1—C5—Cl1 | 114.12 (7) | O4—C14—H14A | 109.5 |
C4—C5—Cl1 | 120.60 (7) | O4—C14—H14B | 109.5 |
N1—C6—C12 | 121.71 (8) | H14A—C14—H14B | 109.5 |
N1—C6—C7 | 118.96 (9) | O4—C14—H14C | 109.5 |
C12—C6—C7 | 119.31 (8) | H14A—C14—H14C | 109.5 |
O2—C7—C9 | 125.81 (9) | H14B—C14—H14C | 109.5 |
O2—C7—C6 | 115.43 (9) | C5—N1—C6 | 118.38 (8) |
C9—C7—C6 | 118.76 (9) | C3—O1—C2 | 115.86 (8) |
O2—C8—H8A | 109.5 | C7—O2—C8 | 116.99 (8) |
O2—C8—H8B | 109.5 | C11—O4—C14 | 116.88 (8) |
O3—C3—C4—C13 | −160.43 (10) | C7—C6—C12—C11 | −0.20 (13) |
O1—C3—C4—C13 | 18.58 (12) | O4—C11—C12—C13 | 1.56 (13) |
O3—C3—C4—C5 | 18.55 (16) | C10—C11—C12—C13 | −178.38 (9) |
O1—C3—C4—C5 | −162.43 (9) | O4—C11—C12—C6 | 179.62 (8) |
C13—C4—C5—N1 | −0.45 (14) | C10—C11—C12—C6 | −0.32 (14) |
C3—C4—C5—N1 | −179.46 (9) | C5—C4—C13—C12 | 0.60 (13) |
C13—C4—C5—Cl1 | −178.93 (7) | C3—C4—C13—C12 | 179.67 (8) |
C3—C4—C5—Cl1 | 2.06 (13) | C6—C12—C13—C4 | −0.11 (13) |
N1—C6—C7—O2 | −1.04 (13) | C11—C12—C13—C4 | 178.00 (9) |
C12—C6—C7—O2 | −179.64 (8) | C4—C5—N1—C6 | −0.23 (14) |
N1—C6—C7—C9 | 178.96 (9) | Cl1—C5—N1—C6 | 178.33 (7) |
C12—C6—C7—C9 | 0.36 (14) | C12—C6—N1—C5 | 0.77 (13) |
O2—C7—C9—C10 | 179.98 (9) | C7—C6—N1—C5 | −177.79 (9) |
C6—C7—C9—C10 | −0.02 (15) | O3—C3—O1—C2 | 3.72 (15) |
C7—C9—C10—C11 | −0.50 (15) | C4—C3—O1—C2 | −175.33 (8) |
C9—C10—C11—O4 | −179.27 (9) | C1—C2—O1—C3 | −172.08 (10) |
C9—C10—C11—C12 | 0.66 (14) | C9—C7—O2—C8 | −11.40 (15) |
N1—C6—C12—C13 | −0.60 (13) | C6—C7—O2—C8 | 168.60 (9) |
C7—C6—C12—C13 | 177.95 (9) | C10—C11—O4—C14 | 7.48 (15) |
N1—C6—C12—C11 | −178.76 (9) | C12—C11—O4—C14 | −172.46 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O3i | 0.93 | 2.56 | 3.482 (2) | 173 |
C14—H14C···N1ii | 0.96 | 2.61 | 3.476 (2) | 150 |
C13—H13···O1 | 0.93 | 2.34 | 2.6713 (19) | 101 |
C13—H13···O4 | 0.93 | 2.42 | 2.7366 (19) | 100 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O3i | 0.9300 | 2.5600 | 3.482 (2) | 173.00 |
C14—H14C···N1ii | 0.9600 | 2.6100 | 3.476 (2) | 150.00 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y+1, −z+2. |
Acknowledgements
We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313. CrossRef CAS Google Scholar
Bouraiou, A., Bouacida, S., Bertrand, C., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1701–o1702. CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hayour, H., Bouraiou, A., Bouacida, S., Benzerka, S. & Belfaitah, A. (2014). Acta Cryst. E70, o195–o196. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valdez, D., Rodrigue-Morales, S., Hermandez-Copos, A., Hernandez-Luis, F., Ypez-Mulian, L., Tapia-Contreras, A. & Castillo, R. (2009). Bioorg. Med. Chem. 17, 1724–1730. Web of Science PubMed Google Scholar
Wang, X. J., Gong, D. L., Wang, J. D., Zhang, J., Liu, C. X. & Xiang, W. S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolines have attracted considerable interest for many years due to their presence in the skeleton of a large number of bioactive compounds and natural products (Wang, et al. 2011), such as antibacterial (Benzerka, et al.2012). in going with our investigation, recently, we have reported the synthesis and structure determination of some new quinoline compounds (Hayour, et al., 2014; Bouraiou, et al. 2012). In this paper, we describe the synthesis and the structure determination of ethyl 2-chloro-5,8-dimethoxyquinoline-3-carboxylate (I) which obtained in one step, by addition of NaCN in presence of manganese dioxide in absolute ethanol to 2-chloro-5,8-dimethoxyquinoline-3-carbaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymmetric unit of title compound the quinoline ring is four time substituted by two methoxy, one chlore and one ethyl carboxylate. The two rings of quinolyl moiety are fused in an axial fashion and form dihedral angle of 1.75 (3) Å. The crystal packing can be described as double layers parallel to (101) plane, along the b axis (Fig. 2). It is stabilized by intermolecular hydrogen bond (N—H···O and C—H···O) and strong π–π stacking, resulting in the formation of infinite a three-dimensional network linking these layers together and reinforces cohesion of the structure (Fig. 2). Hydrogen-bonding parameters are listed in Table 1.