research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Relative substituent orientation in the structure of cis-3-chloro-1,3-di­methyl-N-(4-nitro­phen­yl)-2-oxo­cyclo­pentane-1-carboxamide

aDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA, and bUniversity of Bremen, Department of Chemistry, Leobener Str. NW 2C, D-28359 Bremen, Germany
*Correspondence e-mail: vazov@uni-bremen.de

Edited by P. C. Healy, Griffith University, Australia (Received 31 July 2014; accepted 1 August 2014; online 6 August 2014)

The structure of the title compound, C14H15ClN2O4, prepared by reaction of a methacryloyl dimer with nitro­aniline, was determined to establish the relative substituent orientation on the cyclo­penta­none ring. In agreement with an earlier proposed reaction mechanism, the amide group and the methyl group adjacent to the chloro substituent adopt equatorial positions and relative cis orientation, whereas the Cl substituent itself and the methyl group adjacent to the amide have axial orientations relative to the mean plane of the five-membered ring. The conformation of the mol­ecule is stabilized by one classical N—H⋯O (2.18 Å) and one non-classical C—H⋯O (2.23 Å) hydrogen bond, each possessing an S(6) graph-set motif. The crystal packing is defined by several non-classical intra­molecular hydrogen bonds, as well as by partial stacking of the aromatic rings.

1. Chemical context

The title compound, cis-3-chloro-1,3-dimethyl-N-(4-nitro­phen­yl)-2-oxo­cyclo­pentane-1-carboxamide, (1), was prepared in the course of study of the formation and reactivity of methacryloyl chloride dimers (2), (3) and (4) (Warneke et al., 2014[Warneke, J., Wang, Z., Zeller, M., Leibfritz, D., Plaumann, M. & Azov, V. A. (2014). Tetrahedron 70, 6515-6521.]). The scheme below shows the reactivity of methacryloyl dimers and the synthesis of the title compound (1) (LA = Lewis acid).

[Scheme 1]

Dimer (2) forms in the oxa-Diels–Alder reaction of two methacryloyl chloride mol­ecules and, in the presence of a Lewis acid (LA, such as AlCl3 or TiCl4), rearranges to cyclo­penta­none derivatives (3) (kinetic product) and (4) (thermodynamic product). Compounds (3) and (4) show similar 1H and 13C NMR spectra, making the direct assignment of the relative orientation of the cyclo­penta­none substituents almost impossible. The crystal structure of (1), as well as the crystal structure of another aromatic amide, cis-3-chloro-N-(3,5-dichloro­phen­yl)-1,3-dimethyl-2-oxo­cyclo­penta­necarboxamide, solved and reported earlier (Warneke et al., 2014[Warneke, J., Wang, Z., Zeller, M., Leibfritz, D., Plaumann, M. & Azov, V. A. (2014). Tetrahedron 70, 6515-6521.]), were crucial for the determination of the substituent orientation of the cyclo­penta­none ring after the isolation and derivatization of (4). For the X-ray structures of related trans-3-chloro-N-(3,5-di­chloro­phen­yl)-1,3-dimethyl-2-oxo­cyclo­penta­ne­carboxamide with cis orientation of two methyl groups, see Fischer et al. (1985[Fischer, W., Belluš, D., Adler, A., Francotte, E. & Roloff, A. (1985). Chimia, 39, 19-20.]).

2. Structural commentary

The mol­ecular structure of the title compound with atom numbering is shown in Fig. 1[link]. All bond lengths and angles may be considered normal. The crystal structure shows the cis disposition of the two methyl substituents of the cyclo­pentan­one ring. The C1 and C7 substituents adopt equatorial, whereas the C8 and Cl1 substituents have axial orientations relative to the mean plane of the five-membered ring. The 4-nitro­anilide group is essentially planar, with a maximum deviation of fitted atoms from the least-square plane, which is defined by atoms C9–C14, N1, N2, O1 and O2, of 0.0139 (9) Å for N1. The conformation of the amide is stabilized by one classical N1—H1⋯O1 (2.18 Å) and one non-classical C10—H10⋯O2 (2.23 Å) hydrogen bonds (Fig. 2[link]), both with an S(6) graph-set motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Figure 1]
Figure 1
Plot of the title mol­ecule, (1), with the atom-numbering scheme. Displacement ellipsoids are represented at 50% probability levels.
[Figure 2]
Figure 2
Plot of compound (1) depicting one classical N1—H1⋯O1 and one non-classical C10—H10⋯O2 intra­molecular hydrogen bond (blue), as well as inter­molecular inter­actions with distances shorter than van der Waals contacts (red).

3. Supra­molecular features

The crystal packing is governed by several short contacts, which may be classified as non-classical hydrogen bonds (for reviews on weak non-classical hydrogen bonding, see Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]; Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]; Desiraju, 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]), and by partial stacking of the aromatic rings. Mol­ecules of the title compound form columns with alternating enanti­omeric mol­ecules along the c axis. Although no tight stacking of the aromatic rings can be established [distance between the ring centroids of 4.3719 (6) Å], the aromatic rings of neighboring mol­ecules show partial stacking with several short contacts centered near their nitro-substituent: C14⋯C13i [3.3843 (15) Å; symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}]], C14⋯C12i [3.2483 (15) Å], and C13⋯N2i [3.1860 (14) Å]. The C7—H7A⋯O1i hydrogen bond (2.53 Å) provides additional cohesion between neighboring enanti­omeric mol­ecules in the columns (Table 1[link]; Fig. 3[link]). Along the b axis, parallel columns are inter­connected by C10—H10⋯Cl1iii [2.86 Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1], and along the a axis by C7—H7C⋯O4ii [2.54 Å; symmetry code: (ii) x + 1, y, z + 1] non-classical hydrogen bonds (Fig. 4[link]). Although the C6—H6B⋯O3v [2.68 Å; symmetry code: (v) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]] contact also lies below the sum of van der Waals radii, its classification as a hydrogen bond is disputable due to an unfavorable angle of 108°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.18 2.8536 (12) 134
C10—H10⋯O2 0.95 2.23 2.8467 (14) 122
C7—H7A⋯O1i 0.98 2.53 3.3577 (13) 142
C7—H7C⋯O4ii 0.98 2.54 3.4898 (15) 165
C10—H10⋯Cl1iii 0.95 2.86 3.5362 (10) 129
C14—H14⋯Cl1iv 0.95 2.96 3.9034 (10) 171
C6—H6B⋯O3v 0.99 2.68 3.1440 (14) 109
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Plot of the pair of enanti­omeric mol­ecules of (1), showing short contacts between two aromatic rings and the C7—H7A⋯O1 hydrogen bond.
[Figure 4]
Figure 4
Crystal packing of (1), viewed along the c axis. C10—H10⋯Cl1 contacts are shown as blue dashed lines and C7—H7C⋯O4 contacts as green dashed lines.

4. Synthesis and crystallization

The title compound was prepared as described by Warneke et al. (2014[Warneke, J., Wang, Z., Zeller, M., Leibfritz, D., Plaumann, M. & Azov, V. A. (2014). Tetrahedron 70, 6515-6521.]) by reaction of 4-nitro­aniline and cis-3-chloro-1,3-dimethyl-2-oxo­cyclo­penta­necarbonyl chloride in the presence of Et3N in THF. The product was purified by column chromatography on SiO2 (CHCl3) and readily afforded large transparent X-ray quality crystals upon slow evaporation of CHCl3/heptane solution (m.p. 402–403 K). 1H NMR (360 MHz, CDCl3): δ 8.89 (bs, 1H), 8.26–8.16 (m, 2H), 7.78–7.70 (m, 2H), 2.91–2.78 (m, 1H), 2.49–2.40 (m, 1H), 2.12–2.05 (m, 1H), 2.05–1.98 (m, 1H), 1.75 (s, 3H), 1.51 (s, 3H). 13C NMR (90 MHz, CDCl3): δ 212.4, 168.9, 143.7, 143.3, 125.0, 119.3, 69.7, 55.0, 35.6, 29.4, 25.0, 24.1. MS (EI): m/z (%) 310 (85) [M]+., 173 (85) [M–NHAr]+. HRMS (EI): m/z [M]+ calculated for C14H15ClN2O4 310.07203, found 310.07170.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included at calculated positions using a riding model, with aromatic, methyl and amide C—H bond lengths of 0.99, 098 and 0.95 Å, respectively, and amide N—H bond lengths of 0.88 Å. The Uiso(H) values were fixed at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C,N) for all other carrier atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H15ClN2O4
Mr 310.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4117 (4), 16.1679 (7), 7.8201 (3)
β (°) 103.382 (2)
V3) 1403.66 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.28 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.681, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 15441, 6627, 5116
Rint 0.028
(sin θ/λ)max−1) 0.862
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.06
No. of reflections 6627
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Chemical context top

The title compound, cis-3-chloro-1,3-di­methyl-N-(4-nitro­phenyl)-2-oxo­cyclo­pentane-1-carboxamide, (1), was prepared in the course of study of the formation and reactivity of methacryloyl chloride dimers (2), (3) and (4) (Warneke et al., 2014). The scheme below shows the reactivity of methacryloyl dimers and the synthesis of the title compound (1) (LA = Lewis acid). Dimer (2) forms in the oxa-Diels–Alder reaction of two methacryloyl chloride molecules and, in the presence of a Lewis acid (LA, such as AlCl3 or TiCl4), rearranges to cyclo­penta­none derivatives (3) (kinetic product) and (4) (thermodynamic product). Compounds (3) and (4) show similar 1H and 13C NMR spectra, making the direct assignment of the relative orientation of the cyclo­penta­none substituents almost impossible. The crystal structure of (1), as well as the crystal structure of another aromatic amide, cis-3-chloro-N-(3,5-di­chloro­phenyl)-1,3-di­methyl-2-oxo­cyclo­pentane­carboxamide, solved and reported earlier (Warneke et al., 2014), were crucial for the determination of the substituent orientation of the cyclo­penta­none ring after the isolation and derivatization of (4). For the X-ray structures of related trans-3-chloro-N-(3,5-di­chloro­phenyl)-1,3-di­methyl-2-oxo­cyclo­pentane­carboxamide with cis orientation of two methyl groups, see Fischer et al. (1985).

Structural commentary top

The molecular structure of the title compound with atom numbering is shown in Fig. 1. All bond lengths and angles may be considered normal. The crystal structure shows the cis disposition of the two methyl substituents of the cyclo­penta­none ring. The C1 and C7 substituents adopt equatorial, whereas the C8 and Cl1 substituents have axial orientations relative to the mean plane of the five-membered ring. The 4-nitro­anilide group is essentially planar, with a maximum deviation of fitted atoms from the least-square plane, which is defined by atoms C9–C14, N1, N2, O1 and O2 , of 0.0139 (9) Å for N1. The conformation of the amide is stabilized by one classical N1—H1···O1 (2.18 Å) and one non-classical C10—H10···O2 (2.23 Å) hydrogen bonds (Fig. 2), both with an S(6) graph-set motif (Bernstein et al., 1995).

Supra­molecular features top

The crystal packing is governed by several short contacts, which may be classified as non-classical hydrogen bonds (for reviews on weak non-classical hydrogen bonding, see Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005), and by partial stacking of the aromatic rings. Molecules of the title compound form columns with alternating enanti­omeric molecules along the c axis. Although no tight stacking of the aromatic rings can be established [distance between the ring centroids of 4.3719 (6) Å], the aromatic rings of neighboring molecules show partial stacking with several short contacts centered near their nitro-substituent: C14···C13i [3.3843 (15) Å; symmetry code: (i) x, -y+1/2, z-1/2], C14···C12i [3.2483 (15) Å], and C13···N2i [3.1860 (14) Å]. The C7—H7A···O1i hydrogen bond (2.53 Å) provides additional cohesion between neighboring enanti­omeric molecules in the columns (Fig. 3). Along the b axis, parallel columns are inter­connected by C10—H10···Cl1iii [2.86 Å; symmetry code: (iii) -x+1, -y+1, -z+1], and along the a axis by C7—H7C···O4ii [2.54 Å; symmetry code: (ii) x+1, y, z+1] non-classical hydrogen bonds (Fig. 4). Although the C6—H6B···O3v [2.68 Å; symmetry code: (v) -x+1, y+1/2, -z+1/2] contact also lies below the sum of van der Waals radii, its classification as a hydrogen bond is disputable due to an unfavorable angle of 108°.

Synthesis and crystallization top

The title compound was prepared as described by Warneke et al. (2014) by reaction of 4-nitro­aniline and cis-3-chloro-1,3-di­methyl-2-oxo­cyclo­pentane­carbonyl chloride in the presence of Et3N in THF. The product was purified by column chromatography on SiO2 (CHCl3) and readily afforded large transparent X-ray quality crystals upon slow evaporation of CHCl3/heptane solution (m.p. 402–403 K). 1H NMR (360 MHz, CDCl3): δ 8.89 (bs, 1H), 8.26–8.16 (m, 2H), 7.78–7.70 (m, 2H), 2.91–2.78 (m, 1H), 2.49–2.40 (m, 1H), 2.12–2.05 (m, 1H), 2.05–1.98 (m, 1H), 1.75 (s, 3H), 1.51 (s, 3H). 13C NMR (90 MHz, CDCl3): δ 212.4, 168.9, 143.7, 143.3, 125.0, 119.3, 69.7, 55.0, 35.6, 29.4, 25.0, 24.1. MS (EI): m/z (%) 310 (85) [M]+., 173 (85) [M–NHAr]+. HRMS (EI): m/z [M]+ calculated for C14H15ClN2O4 310.07203, found 310.07170.

Refinement top

H atoms were included at calculated positions using a riding model, with aromatic, methyl and amide C—H bond lengths of 0.99, 098 and 0.95 Å, respectively, and amide N—H bond lengths of 0.88 Å. The Uiso(H) values were fixed at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C,N) for all other carrier atoms.

Related literature top

For related literature, see: Bernstein et al. (1995); Desiraju (2005); Desiraju & Steiner (1999); Fischer et al. (1985); Steiner (2002); Warneke et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Plot of the title molecule, (1), with the atom-numbering scheme. Displacement ellipsoids are represented at 50% probability levels.
[Figure 2] Fig. 2. Plot of compound (1) depicting one classical N1—H1···O1 and one non-classical C10—H10···O2 intramolecular hydrogen bond (blue), as well as intermolecular interactions with distances shorter than van der Waals contacts (red).
[Figure 3] Fig. 3. Plot of the pair of enantiomeric molecules of (1), showing short contacts between two aromatic rings and the C7—H7A···O1 hydrogen bond.
[Figure 4] Fig. 4. Crystal packing of (1), viewed along the c axis. C10—H10···Cl1 contacts are shown as blue dashed lines and C7—H7C···O4 contacts as green dashed lines.
cis-3-Chloro-1,3-dimethyl-N-(4-nitrophenyl)-2-oxocyclopentane-1-carboxamide top
Crystal data top
C14H15ClN2O4Dx = 1.470 Mg m3
Mr = 310.73Melting point: 402 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.4117 (4) ÅCell parameters from 8547 reflections
b = 16.1679 (7) Åθ = 2.5–37.8°
c = 7.8201 (3) ŵ = 0.29 mm1
β = 103.382 (2)°T = 100 K
V = 1403.66 (10) Å3Block, colourless
Z = 40.28 × 0.18 × 0.16 mm
F(000) = 648
Data collection top
Bruker D8 Quest CMOS
diffractometer
6627 independent reflections
Radiation source: I-mu-S microsource X-ray tube5116 reflections with I > 2σ(I)
'laterally graded multilayer (Goebel) mirror' monochromatorRint = 0.028
ω and phi scansθmax = 37.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1917
Tmin = 0.681, Tmax = 0.747k = 2127
15441 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5524P]
where P = (Fo2 + 2Fc2)/3
6627 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H15ClN2O4V = 1403.66 (10) Å3
Mr = 310.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4117 (4) ŵ = 0.29 mm1
b = 16.1679 (7) ÅT = 100 K
c = 7.8201 (3) Å0.28 × 0.18 × 0.16 mm
β = 103.382 (2)°
Data collection top
Bruker D8 Quest CMOS
diffractometer
6627 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
5116 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.747Rint = 0.028
15441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
6627 reflectionsΔρmin = 0.36 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64522 (9)0.42645 (6)0.37961 (14)0.01331 (17)
C20.76549 (9)0.42549 (6)0.51672 (14)0.01232 (17)
C30.77769 (9)0.35857 (6)0.65852 (13)0.01139 (16)
C40.83111 (9)0.39694 (6)0.83990 (13)0.01175 (16)
C50.87160 (10)0.48290 (6)0.79734 (15)0.01608 (19)
H5A0.95610.48180.78570.019*
H5B0.86490.52280.89060.019*
C60.78602 (10)0.50660 (6)0.62191 (14)0.01600 (19)
H6A0.70910.52850.64120.019*
H6B0.82310.54890.55960.019*
C70.92411 (9)0.34331 (6)0.96019 (14)0.01468 (18)
H7A0.88940.28880.97230.022*
H7B0.94830.36951.07600.022*
H7C0.99470.33700.91000.022*
C80.86666 (10)0.40959 (7)0.41801 (16)0.0181 (2)
H8A0.85320.35610.35780.027*
H8B0.94490.40910.50240.027*
H8C0.86580.45360.33150.027*
C90.50005 (9)0.33261 (6)0.18533 (13)0.01140 (16)
C100.43082 (10)0.39401 (6)0.08226 (14)0.01465 (18)
H100.45250.45060.10060.018*
C110.33034 (9)0.37168 (6)0.04677 (14)0.01470 (18)
H110.28300.41290.11730.018*
C120.29953 (9)0.28902 (6)0.07204 (14)0.01272 (17)
C130.36802 (9)0.22669 (6)0.02663 (14)0.01327 (17)
H130.34630.17020.00630.016*
C140.46849 (9)0.24892 (6)0.15510 (14)0.01253 (17)
H140.51650.20730.22330.015*
N10.60174 (8)0.35022 (5)0.31966 (12)0.01282 (15)
H10.64240.30730.37150.015*
N20.19374 (8)0.26654 (6)0.20886 (13)0.01633 (17)
O10.75274 (7)0.28588 (5)0.63432 (10)0.01533 (15)
O20.59793 (8)0.49203 (5)0.32621 (13)0.02455 (19)
O30.16813 (9)0.19301 (6)0.23155 (13)0.0270 (2)
O40.13478 (8)0.32247 (6)0.29704 (12)0.02274 (18)
Cl10.69827 (2)0.40657 (2)0.93120 (4)0.01568 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0149 (4)0.0129 (4)0.0118 (4)0.0017 (3)0.0024 (4)0.0009 (3)
C20.0143 (4)0.0112 (4)0.0107 (4)0.0023 (3)0.0015 (3)0.0011 (3)
C30.0117 (4)0.0114 (4)0.0113 (4)0.0001 (3)0.0031 (3)0.0001 (3)
C40.0125 (4)0.0121 (4)0.0106 (4)0.0012 (3)0.0026 (3)0.0003 (3)
C50.0191 (5)0.0129 (4)0.0147 (5)0.0057 (3)0.0008 (4)0.0001 (3)
C60.0217 (5)0.0106 (4)0.0140 (5)0.0040 (3)0.0007 (4)0.0010 (3)
C70.0123 (4)0.0166 (4)0.0143 (5)0.0007 (3)0.0013 (4)0.0018 (3)
C80.0159 (5)0.0241 (5)0.0151 (5)0.0027 (4)0.0049 (4)0.0018 (4)
C90.0112 (4)0.0124 (4)0.0106 (4)0.0001 (3)0.0025 (3)0.0002 (3)
C100.0147 (4)0.0129 (4)0.0150 (5)0.0009 (3)0.0007 (4)0.0015 (3)
C110.0133 (4)0.0154 (4)0.0145 (5)0.0019 (3)0.0014 (4)0.0019 (3)
C120.0102 (4)0.0174 (4)0.0108 (4)0.0005 (3)0.0028 (3)0.0004 (3)
C130.0131 (4)0.0137 (4)0.0132 (4)0.0002 (3)0.0034 (4)0.0004 (3)
C140.0126 (4)0.0124 (4)0.0124 (4)0.0009 (3)0.0025 (3)0.0004 (3)
N10.0128 (4)0.0109 (3)0.0131 (4)0.0001 (3)0.0003 (3)0.0006 (3)
N20.0128 (4)0.0224 (4)0.0131 (4)0.0007 (3)0.0016 (3)0.0007 (3)
O10.0203 (4)0.0104 (3)0.0146 (4)0.0009 (2)0.0026 (3)0.0009 (2)
O20.0275 (4)0.0131 (3)0.0261 (5)0.0012 (3)0.0081 (4)0.0022 (3)
O30.0256 (4)0.0228 (4)0.0265 (5)0.0073 (3)0.0064 (4)0.0012 (3)
O40.0163 (4)0.0281 (4)0.0204 (4)0.0043 (3)0.0025 (3)0.0038 (3)
Cl10.01539 (11)0.01668 (11)0.01600 (12)0.00173 (8)0.00574 (9)0.00161 (8)
Geometric parameters (Å, º) top
C1—O21.2189 (13)C8—H8A0.9800
C1—N11.3701 (13)C8—H8B0.9800
C1—C21.5338 (15)C8—H8C0.9800
C2—C31.5324 (14)C9—C101.4017 (14)
C2—C61.5369 (14)C9—N11.4025 (13)
C2—C81.5515 (15)C9—C141.4061 (13)
C3—O11.2136 (12)C10—C111.3884 (15)
C3—C41.5390 (14)C10—H100.9500
C4—C71.5169 (14)C11—C121.3844 (15)
C4—C51.5253 (14)C11—H110.9500
C4—Cl11.8257 (10)C12—C131.3938 (14)
C5—C61.5371 (15)C12—N21.4616 (14)
C5—H5A0.9900C13—C141.3856 (14)
C5—H5B0.9900C13—H130.9500
C6—H6A0.9900C14—H140.9500
C6—H6B0.9900N1—H10.8800
C7—H7A0.9800N2—O31.2273 (13)
C7—H7B0.9800N2—O41.2373 (13)
C7—H7C0.9800
O2—C1—N1124.66 (10)C4—C7—H7C109.5
O2—C1—C2120.13 (9)H7A—C7—H7C109.5
N1—C1—C2115.13 (8)H7B—C7—H7C109.5
C3—C2—C1115.45 (8)C2—C8—H8A109.5
C3—C2—C6103.77 (8)C2—C8—H8B109.5
C1—C2—C6111.49 (8)H8A—C8—H8B109.5
C3—C2—C8106.84 (8)C2—C8—H8C109.5
C1—C2—C8107.60 (9)H8A—C8—H8C109.5
C6—C2—C8111.64 (9)H8B—C8—H8C109.5
O1—C3—C2126.31 (9)C10—C9—N1123.06 (9)
O1—C3—C4124.24 (9)C10—C9—C14119.77 (9)
C2—C3—C4109.42 (8)N1—C9—C14117.17 (9)
C7—C4—C5116.90 (9)C11—C10—C9119.64 (9)
C7—C4—C3114.34 (8)C11—C10—H10120.2
C5—C4—C3103.98 (8)C9—C10—H10120.2
C7—C4—Cl1109.35 (7)C12—C11—C10119.64 (9)
C5—C4—Cl1109.18 (7)C12—C11—H11120.2
C3—C4—Cl1101.95 (7)C10—C11—H11120.2
C4—C5—C6105.06 (8)C11—C12—C13121.84 (10)
C4—C5—H5A110.7C11—C12—N2118.95 (9)
C6—C5—H5A110.7C13—C12—N2119.20 (9)
C4—C5—H5B110.7C14—C13—C12118.54 (9)
C6—C5—H5B110.7C14—C13—H13120.7
H5A—C5—H5B108.8C12—C13—H13120.7
C2—C6—C5104.58 (8)C13—C14—C9120.55 (9)
C2—C6—H6A110.8C13—C14—H14119.7
C5—C6—H6A110.8C9—C14—H14119.7
C2—C6—H6B110.8C1—N1—C9127.61 (9)
C5—C6—H6B110.8C1—N1—H1116.2
H6A—C6—H6B108.9C9—N1—H1116.2
C4—C7—H7A109.5O3—N2—O4123.15 (10)
C4—C7—H7B109.5O3—N2—C12118.38 (9)
H7A—C7—H7B109.5O4—N2—C12118.47 (9)
O2—C1—C2—C3140.81 (11)C1—C2—C6—C5154.86 (9)
N1—C1—C2—C342.27 (13)C8—C2—C6—C584.75 (10)
O2—C1—C2—C622.73 (14)C4—C5—C6—C237.41 (11)
N1—C1—C2—C6160.35 (9)N1—C9—C10—C11179.12 (10)
O2—C1—C2—C8100.01 (12)C14—C9—C10—C111.15 (16)
N1—C1—C2—C876.91 (11)C9—C10—C11—C120.10 (16)
C1—C2—C3—O147.32 (14)C10—C11—C12—C131.21 (16)
C6—C2—C3—O1169.62 (10)C10—C11—C12—N2179.78 (10)
C8—C2—C3—O172.28 (13)C11—C12—C13—C141.02 (16)
C1—C2—C3—C4134.50 (9)N2—C12—C13—C14179.59 (9)
C6—C2—C3—C412.19 (11)C12—C13—C14—C90.26 (15)
C8—C2—C3—C4105.90 (9)C10—C9—C14—C131.34 (15)
O1—C3—C4—C739.21 (14)N1—C9—C14—C13178.91 (9)
C2—C3—C4—C7139.02 (9)O2—C1—N1—C92.35 (18)
O1—C3—C4—C5167.84 (10)C2—C1—N1—C9174.41 (10)
C2—C3—C4—C510.39 (11)C10—C9—N1—C14.49 (17)
O1—C3—C4—Cl178.65 (11)C14—C9—N1—C1175.77 (10)
C2—C3—C4—Cl1103.11 (8)C11—C12—N2—O3179.12 (11)
C7—C4—C5—C6156.09 (9)C13—C12—N2—O30.51 (15)
C3—C4—C5—C629.04 (11)C11—C12—N2—O40.39 (15)
Cl1—C4—C5—C679.18 (9)C13—C12—N2—O4179.00 (10)
C3—C2—C6—C529.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.182.8536 (12)134
C10—H10···O20.952.232.8467 (14)122
C7—H7A···O1i0.982.533.3577 (13)142
C7—H7C···O4ii0.982.543.4898 (15)165
C10—H10···Cl1iii0.952.863.5362 (10)129
C14—H14···Cl1iv0.952.963.9034 (10)171
C6—H6B···O3v0.992.683.1440 (14)109
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.182.8536 (12)133.6
C10—H10···O20.952.232.8467 (14)122.0
C7—H7A···O1i0.982.533.3577 (13)141.9
C7—H7C···O4ii0.982.543.4898 (15)164.5
C10—H10···Cl1iii0.952.863.5362 (10)129.4
C14—H14···Cl1iv0.952.963.9034 (10)171.1
C6—H6B···O3v0.992.683.1440 (14)108.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15ClN2O4
Mr310.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.4117 (4), 16.1679 (7), 7.8201 (3)
β (°) 103.382 (2)
V3)1403.66 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.18 × 0.16
Data collection
DiffractometerBruker D8 Quest CMOS
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.681, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15441, 6627, 5116
Rint0.028
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.06
No. of reflections6627
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.36

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

 

Acknowledgements

MZ acknowledges the US National Science Foundation for grant 1337296 for the purchase of the X-ray diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, W., Belluš, D., Adler, A., Francotte, E. & Roloff, A. (1985). Chimia, 39, 19–20.  CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWarneke, J., Wang, Z., Zeller, M., Leibfritz, D., Plaumann, M. & Azov, V. A. (2014). Tetrahedron 70, 6515–6521.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds