organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1020-o1021

Crystal structure of (3E)-3-[(4-nitro­phen­­oxy)­meth­yl]-4-phenyl­but-3-en-2-one

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, dPrograma de Pós Graduacão em Biotecnologia, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 10 August 2014; accepted 11 August 2014; online 16 August 2014)

In the title compound, C17H15NO4, the conformation about the C=C double bond [1.348 (2) Å] is E with the ketone group almost co-planar [C—C—C—C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C—C—C—C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the mol­ecule an overall U-shape. The crystal packing feature benzene-C—H⋯O(ketone) contacts that lead to supra­molecular helical chains along the b axis. These are connected by ππ inter­actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å], resulting in the formation of a supra­molecular layer in the bc plane.

1. Related literature

For background to biotransformations mediated by Saccharomyces cerevisiae, see: Rodrigues et al. (2004[Rodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295-303.]); de Paula et al. (2013[Paula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron: Asymmetry, 24, 973-981.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H15NO4

  • Mr = 297.30

  • Monoclinic, P 21 /c

  • a = 12.769 (3) Å

  • b = 9.4607 (2) Å

  • c = 13.0022 (4) Å

  • β = 108.145 (1)°

  • V = 1492.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.52 × 0.23 × 0.12 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.745

  • 9377 measured reflections

  • 2667 independent reflections

  • 2118 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.06

  • 2667 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.45 3.140 (2) 131
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

As part of a continuing inter­est in biotransformations mediated by Saccharomyces cerevisiae, such as the bio-reduction of α-haloketones and enones (Rodrigues et al., 2004), the title compound, (3E)-3-[(4-nitro­phen­oxy)­methyl]-4-phenyl­but-3-en-2- one, was synthesised to be used as a substrate in order to compare its behaviour with that of 3-halo­methyl-4-phenyl-3-buten-2-ones analogues (de Paula et al., 2013). Herein, the crystal structure determination and spectroscopic details are described.

The conformation about the ethene bond in the title compound, Fig. 1, is E. The ketone group is almost co-planar with the double bond as seen in the C11—C8—C9—C10 torsion angle of 7.2 (2)° but the phenyl group is twisted away [C8—C11—C12—C17 160.93 (17)°]. The nitro group is co-planar with the benzene ring to which it is attached [O3—N—C4—C5 = 177.32 (17)°]. The terminal aromatic rings are almost perpendicular [dihedral angle = 81.61 (9)°] to each other so that overall the molecule has the shape of the letter U.

In the crystal packing, C5—H···O2 contacts, Table 1, lead to supra­molecular helical chains along the b axis and these are connected by ππ inter­actions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å; inter-planar angle = 2.70 (9)° for symmetry operation: x, 3/2-y, -1/2+z] to form a supra­molecular layer in the bc plane, Fig. 2.

Synthesis and crystallization top

Potassium carbonate (1.66 g, 12 mmol) was added to a solution of 4-nitro­phenol (1.53 g, 11 mmol) and 3-bromo­methyl-4-phenyl-3-buten-2-one (2.39 g, 10 mmol) in acetone (10 mL). The reaction mixture was stirred for 6 h. Then, water (100 mL) was added and the product extracted with di­chloro­methane (3 x 50 mL). The organic layer was washed with brine, and dried over sodium sulfate. The solvent was removed under reduced pressure and the product purified by column chromatography (hexane/ethyl acetate, 8:2) to afford 3-[(4-nitro­phen­oxy)­methyl]-4-phenyl-3-buten-2-one as a colourless solid. The product was recrystallized by slow evaporation of a 1:4 mixture of hexane and di­chloro­methane. The crystallised isomer, was shown by crystallography to be the E isomer; M.pt: 398.6–399.6 K. 1H NMR (CDCl3, 400 MHz): δ 2.54 (3H, s), 4.93 (2H, s), 6.99-8.21 (9H, m), 7.92 (1H, s). 13C NMR (CDCl3, 100 MHz) δ 26.0, 62.3, 114.9, 125.9, 128.9, 129.6, 130.1, 134.1, 135.0, 141.8, 146.3, 163.5, 198.2. ESI±HRMS ((M+H)+) calcd.: 298.1079; found: 298.1049.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Related literature top

For background to biotransformations mediated by Saccharomyces cerevisiae, see: Rodrigues et al. (2004); de Paula et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of unit-cell contents in projection down the c axis. The C—H···O and ππ contacts are shown as orange and purple dashed lines, respectively.
(I) top
Crystal data top
C17H15NO4F(000) = 624
Mr = 297.30Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3883 reflections
a = 12.769 (3) Åθ = 2.7–25.1°
b = 9.4607 (2) ŵ = 0.10 mm1
c = 13.0022 (4) ÅT = 290 K
β = 108.145 (1)°Irregular, colourless
V = 1492.6 (4) Å30.52 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2667 independent reflections
Radiation source: fine-focus sealed tube2118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 915
Tmin = 0.686, Tmax = 0.745k = 118
9377 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3426P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2667 reflectionsΔρmax = 0.16 e Å3
201 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (17)
Crystal data top
C17H15NO4V = 1492.6 (4) Å3
Mr = 297.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.769 (3) ŵ = 0.10 mm1
b = 9.4607 (2) ÅT = 290 K
c = 13.0022 (4) Å0.52 × 0.23 × 0.12 mm
β = 108.145 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2667 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2118 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.745Rint = 0.021
9377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2667 reflectionsΔρmin = 0.12 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18817 (9)0.97520 (13)0.36449 (8)0.0543 (3)
O20.07283 (12)1.20609 (17)0.47397 (12)0.0841 (5)
O30.28681 (13)1.06055 (17)0.07967 (11)0.0831 (5)
O40.16374 (15)0.90131 (18)0.12490 (11)0.0920 (5)
N0.22052 (14)0.98328 (17)0.05788 (12)0.0623 (4)
C10.19856 (12)0.98711 (17)0.26230 (12)0.0448 (4)
C20.27428 (14)1.07139 (18)0.23691 (13)0.0522 (4)
H20.32101.12910.28930.063*
C30.28067 (14)1.06981 (18)0.13101 (14)0.0538 (4)
H30.33281.12570.11390.065*
C40.21123 (13)0.98717 (17)0.05269 (12)0.0483 (4)
C50.13386 (14)0.90499 (19)0.07617 (13)0.0541 (4)
H50.08580.84990.02270.065*
C60.12779 (14)0.90476 (19)0.18155 (13)0.0528 (4)
H60.07550.84850.19810.063*
C70.24741 (14)1.07108 (18)0.44897 (12)0.0503 (4)
H7A0.23141.16810.42510.060*
H7B0.32611.05570.46640.060*
C80.21127 (13)1.04372 (17)0.54754 (12)0.0473 (4)
C90.11652 (14)1.13064 (19)0.55156 (14)0.0559 (4)
C100.07616 (17)1.1245 (2)0.64904 (16)0.0726 (6)
H10A0.01781.19180.64050.109*
H10B0.13581.14660.71310.109*
H10C0.04921.03130.65550.109*
C110.25497 (13)0.94713 (18)0.62529 (12)0.0475 (4)
H110.22270.94400.68030.057*
C120.34410 (13)0.84741 (17)0.63703 (12)0.0459 (4)
C130.38193 (14)0.80114 (19)0.55154 (14)0.0550 (4)
H130.34840.83360.48150.066*
C140.46774 (15)0.7087 (2)0.57213 (15)0.0612 (5)
H140.49360.67930.51620.073*
C150.51684 (15)0.65826 (19)0.67625 (16)0.0611 (5)
H150.57620.59640.68940.073*
C160.47913 (15)0.69833 (19)0.76078 (15)0.0608 (5)
H160.51170.66240.83000.073*
C170.39348 (15)0.79129 (18)0.74136 (13)0.0531 (4)
H170.36730.81800.79770.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (7)0.0642 (7)0.0451 (6)0.0149 (6)0.0200 (5)0.0061 (5)
O20.0779 (10)0.0976 (11)0.0751 (9)0.0393 (9)0.0214 (7)0.0182 (8)
O30.0911 (11)0.0998 (11)0.0756 (9)0.0136 (9)0.0507 (8)0.0119 (8)
O40.1264 (13)0.1010 (12)0.0552 (8)0.0303 (11)0.0376 (8)0.0145 (8)
N0.0741 (11)0.0658 (10)0.0540 (9)0.0029 (9)0.0300 (8)0.0076 (8)
C10.0415 (8)0.0499 (9)0.0447 (8)0.0009 (7)0.0157 (7)0.0023 (7)
C20.0462 (9)0.0575 (10)0.0518 (9)0.0100 (8)0.0135 (7)0.0011 (8)
C30.0481 (9)0.0578 (10)0.0591 (10)0.0071 (8)0.0221 (8)0.0081 (8)
C40.0495 (9)0.0511 (9)0.0481 (8)0.0033 (8)0.0208 (7)0.0057 (7)
C50.0525 (10)0.0609 (10)0.0489 (9)0.0106 (8)0.0160 (7)0.0052 (8)
C60.0478 (9)0.0622 (10)0.0518 (9)0.0138 (8)0.0203 (7)0.0042 (8)
C70.0500 (9)0.0507 (9)0.0492 (9)0.0047 (8)0.0139 (7)0.0037 (7)
C80.0444 (9)0.0505 (9)0.0458 (8)0.0007 (7)0.0124 (7)0.0064 (7)
C90.0490 (10)0.0609 (11)0.0543 (10)0.0056 (9)0.0111 (8)0.0054 (8)
C100.0601 (12)0.0882 (15)0.0759 (12)0.0178 (11)0.0303 (10)0.0007 (11)
C110.0457 (9)0.0556 (9)0.0421 (8)0.0020 (8)0.0149 (7)0.0065 (7)
C120.0434 (9)0.0458 (8)0.0475 (8)0.0036 (7)0.0127 (7)0.0038 (7)
C130.0553 (10)0.0597 (10)0.0502 (9)0.0060 (9)0.0166 (8)0.0012 (8)
C140.0585 (11)0.0613 (11)0.0695 (11)0.0063 (9)0.0282 (9)0.0033 (9)
C150.0475 (10)0.0535 (10)0.0817 (13)0.0032 (8)0.0193 (9)0.0038 (9)
C160.0577 (11)0.0582 (11)0.0610 (10)0.0024 (9)0.0104 (8)0.0111 (8)
C170.0568 (10)0.0517 (10)0.0506 (9)0.0025 (8)0.0164 (7)0.0007 (7)
Geometric parameters (Å, º) top
O1—C11.3804 (17)C8—C111.348 (2)
O1—C71.4436 (19)C8—C91.477 (2)
O2—C91.220 (2)C9—C101.511 (3)
O3—N1.217 (2)C10—H10A0.9600
O4—N1.222 (2)C10—H10B0.9600
N—C41.479 (2)C10—H10C0.9600
C1—C21.371 (2)C11—C121.449 (2)
C1—C61.391 (2)C11—H110.9300
C2—C31.405 (2)C12—C171.409 (2)
C2—H20.9300C12—C131.412 (2)
C3—C41.368 (2)C13—C141.362 (2)
C3—H30.9300C13—H130.9300
C4—C51.364 (2)C14—C151.388 (3)
C5—C61.396 (2)C14—H140.9300
C5—H50.9300C15—C161.383 (3)
C6—H60.9300C15—H150.9300
C7—C81.514 (2)C16—C171.364 (2)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—H170.9300
C1—O1—C7119.76 (12)O2—C9—C8117.72 (16)
O3—N—O4121.10 (16)O2—C9—C10121.91 (16)
O3—N—C4118.91 (16)C8—C9—C10120.37 (15)
O4—N—C4119.97 (15)C9—C10—H10A109.5
C2—C1—O1124.46 (14)C9—C10—H10B109.5
C2—C1—C6119.02 (14)H10A—C10—H10B109.5
O1—C1—C6116.50 (13)C9—C10—H10C109.5
C1—C2—C3119.38 (15)H10A—C10—H10C109.5
C1—C2—H2120.3H10B—C10—H10C109.5
C3—C2—H2120.3C8—C11—C12130.43 (15)
C4—C3—C2120.91 (15)C8—C11—H11114.8
C4—C3—H3119.5C12—C11—H11114.8
C2—C3—H3119.5C17—C12—C13118.71 (15)
C5—C4—C3120.38 (15)C17—C12—C11116.61 (14)
C5—C4—N119.08 (15)C13—C12—C11124.66 (14)
C3—C4—N120.53 (15)C14—C13—C12119.73 (16)
C4—C5—C6119.06 (15)C14—C13—H13120.1
C4—C5—H5120.5C12—C13—H13120.1
C6—C5—H5120.5C13—C14—C15120.28 (17)
C1—C6—C5121.22 (15)C13—C14—H14119.9
C1—C6—H6119.4C15—C14—H14119.9
C5—C6—H6119.4C16—C15—C14121.17 (17)
O1—C7—C8108.12 (13)C16—C15—H15119.4
O1—C7—H7A110.1C14—C15—H15119.4
C8—C7—H7A110.1C17—C16—C15119.14 (17)
O1—C7—H7B110.1C17—C16—H16120.4
C8—C7—H7B110.1C15—C16—H16120.4
H7A—C7—H7B108.4C16—C17—C12120.90 (16)
C11—C8—C9120.21 (15)C16—C17—H17119.5
C11—C8—C7125.92 (15)C12—C17—H17119.5
C9—C8—C7113.82 (14)
C7—O1—C1—C210.0 (2)O1—C7—C8—C990.67 (16)
C7—O1—C1—C6171.34 (14)C11—C8—C9—O2172.68 (17)
O1—C1—C2—C3176.97 (15)C7—C8—C9—O25.0 (2)
C6—C1—C2—C31.7 (2)C11—C8—C9—C107.2 (2)
C1—C2—C3—C41.1 (3)C7—C8—C9—C10175.10 (16)
C2—C3—C4—C50.3 (3)C9—C8—C11—C12177.64 (16)
C2—C3—C4—N178.36 (15)C7—C8—C11—C120.2 (3)
O3—N—C4—C5177.32 (17)C8—C11—C12—C17160.93 (17)
O4—N—C4—C54.2 (3)C8—C11—C12—C1320.7 (3)
O3—N—C4—C34.0 (3)C17—C12—C13—C142.8 (3)
O4—N—C4—C3174.52 (17)C11—C12—C13—C14178.89 (16)
C3—C4—C5—C61.0 (3)C12—C13—C14—C151.0 (3)
N—C4—C5—C6177.68 (15)C13—C14—C15—C161.0 (3)
C2—C1—C6—C51.0 (3)C14—C15—C16—C171.3 (3)
O1—C1—C6—C5177.76 (15)C15—C16—C17—C120.6 (3)
C4—C5—C6—C10.4 (3)C13—C12—C17—C162.6 (2)
C1—O1—C7—C8174.07 (13)C11—C12—C17—C16178.98 (16)
O1—C7—C8—C1186.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.453.140 (2)131
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.453.140 (2)131
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the data collection. The Brazilian agencies CNPq (305626/2013–2 to JZ-S), CAPES (808/2009 to JZ-S) and FAPESP (2012/22524–9 to SHM) are acknowledged for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron: Asymmetry, 24, 973–981.  Google Scholar
First citationRodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295–303.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1020-o1021
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds