organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1051-o1052

Crystal structure of (3E)-3-(2,4-di­nitro­phen­­oxy­meth­yl)-4-phenyl­but-3-en-2-one

aBioMat-Departmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, cDepartmento de Qímica, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 15 August 2014; accepted 19 August 2014; online 23 August 2014)

In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C—C—C—C torsion angle = 9.5 (2)°] along with the phenyl ring [C—C—C—C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O—N—C—C = 4.2 (2)°], whereas the one in the ortho position is twisted [O—N—C—C = 138.28 (13)°]. The mol­ecules associate via C—H⋯O inter­actions, involving both O atoms from the 2-nitro group, to form a helical supra­molecular chain along [010]. Nitro–nitro N⋯O inter­actions [2.8461 (19) Å] connect the chains into layers that stack along [001].

1. Related literature

For background to biotransformations mediated by Saccharomyces cerevisiae, see: Rodrigues et al. (2004[Rodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295-303.]); de Paula et al. (2013[Paula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron Asymmetry, 24, 973-981.]). For a related structure, see: Zukerman-Schpector et al. (2014[Zukerman-Schpector, J., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Nucci, P. R. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1020-o1021.]). For inter­actions between nitro groups, see: Daszkiewicz (2013[Daszkiewicz, M. (2013). CrystEngComm, 15, 10427-10430.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H14N2O6

  • Mr = 342.30

  • Monoclinic, P 21 /c

  • a = 12.8459 (6) Å

  • b = 7.6983 (4) Å

  • c = 19.4283 (8) Å

  • β = 122.254 (2)°

  • V = 1624.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 290 K

  • 0.66 × 0.45 × 0.28 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.699, Tmax = 0.745

  • 10435 measured reflections

  • 2957 independent reflections

  • 2630 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.04

  • 2957 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5i 0.93 2.41 3.1375 (18) 135
C16—H16⋯O6ii 0.93 2.58 3.292 (3) 134
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

In the context of the study of biotransformation reactions mediated by Saccharomyces cerevisiae, such as the bio-reduction of α-haloketones and enones (Rodrigues et al., 2004), the title compound, (3E)-3-(2,4-di­nitro­phen­oxy­methyl)-4-phenyl­but-3-en-2- one, (I), as well as its 4-nitro­phenyl­methyl analogue, i.e. (3E)-3-(4-nitro­phen­oxy­methyl)-4-phenyl­but-3-en-2-one, (II), (Zukerman-Schpector et al. 2014), were synthesised to be used as substrates in order to compare their behaviour with that of the 3-halo­methyl-4-phenyl-3-buten-2-ones analogues (de Paula et al., 2013). Herein, the crystal structure determination and spectroscopic details of (I) are described.

In (I), the conformation about the CC double bond [1.345 (2) Å] is E. The ketone moiety almost co-planar [C11–C8–C9–C10 torsion angle = 9.5 (2) °] with the double bond but the phenyl ring is twisted [C8–C11–C12–C17 = -150.23 (16)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The p-nitro moiety is approximately co-planar with the benzene ring to which it is attached [O3–N1–C4–C5 = -175.29 (14) °] while the the one in the o-position is twisted [O5–N2–C2–C3 = -40.76 (17)°].

Fig. 2 shows and overlay diagram of (I) and the inverted molecule of (II) (Zukerman-Schpector et al. 2014). Clearly, the two molecules adopt very similar conformations.

In the crystal packing, molecules associate via C—H···O inter­actions, whereby the O atoms of the o-nitro group inter­act with H derived from a benzene or a phenyl ring, leading to a supra­molecular helical chain along [0 1 0]; Fig. 2. There also N···O5 inter­actions [2.8461 (19) Å], i.e. nitro···nitro inter­actions (Daszkiewicz, 2013), that link the chains into a layer. Layers stack along [0 0 1] without specific inter­molecular inter­actions between them, Fig. 3.

Synthesis and crystallization top

Potassium carbonate (232 mg, 2.4 mmol) and 2,4-di­nitro­phenol (368 mg, 2 mmol) were added to a solution of 4-nitro­phenol (1.53 g, 11 mmol) and 3-bromo­methyl-4-phenyl-3-buten-2-one (478 mg, 2 mmol) in dry acetone (4 mL). The reaction mixture was stirred for 16 hours and the filtered. The solvent was evaporated and the residue was purified by column chromatography (hexane/EtOAc, 80:20) to afford the product as a colourless solid in 75% yield. The product was recrystallized by slow evaporation of a 2:1 di­chloro­methane/hexane mixture. M.pt: 442.2–442.8 K. 1H NMR (CD2Cl2, 400 MHz): δ 2.52 (3H, s), 5.12 (2H, s), 7.41 (d, 1H, J = 9.2 Hz), 7.43-7.56 (5H, m), 7.99 (1H, s), 8.42 (dd, 1H, J = 2.8, 9.2 Hz), 8.72 (d, 1H, J = 2.8 Hz). 13C NMR (CD2Cl2, 150 MHz): δ 26.2, 64.7, 116.1, 122.3, 129.5, 129.7, 130.2, 130.8, 134.5, 134.6, 139.8, 140.9, 148.1, 157.0, 198.4.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl-C).

Related literature top

For background to biotransformations mediated by Saccharomyces cerevisiae, see: Rodrigues et al. (2004); de Paula et al. (2013). For a related structure, see: Zukerman-Schpector et al. (2014). For interactions between nitro groups, see: Daszkiewicz (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of (I), red image, with inverted (II), blue image, drawn so that the CCC(phenyl) atoms are overlapped.
[Figure 3] Fig. 3. A view of helical supramolecular chain along [0 1 0]. The C—H···O contacts are shown as orange dashed lines.
[Figure 4] Fig. 4. A view of unit-cell contents in projection down the b axis. The C—H···O and N···O contacts are shown as orange and blue dashed lines, respectively.
(3E)-3-(2,4-Dinitrophenoxymethyl)-4-phenylbut-3-en-2-one top
Crystal data top
C17H14N2O6F(000) = 712
Mr = 342.30Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6161 reflections
a = 12.8459 (6) Åθ = 2.9–25.3°
b = 7.6983 (4) ŵ = 0.11 mm1
c = 19.4283 (8) ÅT = 290 K
β = 122.254 (2)°Irregular, colourless
V = 1624.82 (14) Å30.66 × 0.45 × 0.28 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2957 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1015
Tmin = 0.699, Tmax = 0.745k = 79
10435 measured reflectionsl = 2319
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4196P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.20 e Å3
228 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0323 (19)
Crystal data top
C17H14N2O6V = 1624.82 (14) Å3
Mr = 342.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8459 (6) ŵ = 0.11 mm1
b = 7.6983 (4) ÅT = 290 K
c = 19.4283 (8) Å0.66 × 0.45 × 0.28 mm
β = 122.254 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2630 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.745Rint = 0.019
10435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2957 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93401 (11)0.15407 (17)0.37127 (8)0.0384 (3)
C20.99377 (11)0.00425 (16)0.36899 (7)0.0364 (3)
C31.08837 (11)0.01022 (18)0.35523 (8)0.0409 (3)
H31.12390.09120.35100.049*
C41.12866 (12)0.17061 (19)0.34788 (8)0.0436 (3)
C51.07599 (14)0.3221 (2)0.35327 (9)0.0509 (4)
H51.10620.42920.34960.061*
C60.97836 (14)0.31403 (18)0.36410 (10)0.0494 (4)
H60.94180.41610.36660.059*
C70.76361 (13)0.28733 (18)0.36901 (10)0.0463 (3)
H7A0.73310.34220.31670.056*
H7B0.81400.37050.41150.056*
C80.65850 (12)0.22873 (19)0.37591 (9)0.0437 (3)
C90.68382 (13)0.2244 (2)0.46004 (9)0.0503 (4)
C100.58981 (16)0.1491 (3)0.47503 (11)0.0656 (5)
H10A0.62290.14580.53250.098*
H10B0.56940.03340.45340.098*
H10C0.51710.21990.44880.098*
C110.54588 (13)0.18897 (19)0.31208 (9)0.0464 (3)
H110.48770.16280.32510.056*
C120.50092 (13)0.18058 (18)0.22527 (9)0.0447 (3)
C130.57329 (14)0.1286 (2)0.19522 (9)0.0502 (4)
H130.65570.10120.23120.060*
C140.52360 (15)0.1174 (2)0.11257 (10)0.0568 (4)
H140.57290.08300.09330.068*
C150.40169 (16)0.1568 (2)0.05828 (10)0.0596 (4)
H150.36900.14960.00260.071*
C160.32823 (15)0.2069 (2)0.08653 (10)0.0613 (4)
H160.24580.23370.05000.074*
C170.37725 (14)0.2172 (2)0.16927 (10)0.0539 (4)
H170.32680.24920.18800.065*
N11.22919 (11)0.1784 (2)0.33327 (8)0.0572 (4)
N20.95589 (10)0.16711 (15)0.38003 (7)0.0443 (3)
O10.83551 (8)0.13359 (12)0.37729 (6)0.0459 (3)
O20.78088 (11)0.27977 (19)0.51669 (7)0.0716 (4)
O31.26869 (11)0.0420 (2)0.32347 (8)0.0767 (4)
O41.26880 (12)0.32170 (19)0.33128 (9)0.0825 (4)
O50.95090 (13)0.28306 (15)0.33557 (8)0.0716 (4)
O60.93475 (11)0.18635 (15)0.43354 (8)0.0673 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (6)0.0384 (7)0.0442 (7)0.0002 (5)0.0209 (6)0.0030 (5)
C20.0316 (6)0.0352 (7)0.0391 (6)0.0014 (5)0.0167 (5)0.0027 (5)
C30.0341 (6)0.0469 (8)0.0400 (7)0.0039 (6)0.0187 (6)0.0018 (6)
C40.0338 (6)0.0564 (9)0.0412 (7)0.0039 (6)0.0204 (6)0.0042 (6)
C50.0478 (8)0.0461 (8)0.0605 (9)0.0090 (6)0.0301 (7)0.0067 (7)
C60.0496 (8)0.0357 (7)0.0681 (10)0.0009 (6)0.0349 (8)0.0041 (7)
C70.0426 (7)0.0407 (8)0.0599 (9)0.0080 (6)0.0302 (7)0.0032 (6)
C80.0405 (7)0.0443 (8)0.0518 (8)0.0104 (6)0.0284 (6)0.0041 (6)
C90.0443 (8)0.0550 (9)0.0509 (8)0.0158 (7)0.0248 (7)0.0081 (7)
C100.0647 (10)0.0875 (13)0.0582 (10)0.0071 (9)0.0419 (9)0.0055 (9)
C110.0418 (7)0.0524 (8)0.0542 (8)0.0061 (6)0.0318 (7)0.0013 (6)
C120.0436 (7)0.0443 (8)0.0517 (8)0.0024 (6)0.0291 (7)0.0003 (6)
C130.0470 (8)0.0546 (9)0.0541 (8)0.0103 (7)0.0304 (7)0.0040 (7)
C140.0668 (10)0.0592 (10)0.0597 (9)0.0106 (8)0.0440 (8)0.0052 (8)
C150.0666 (10)0.0640 (11)0.0492 (9)0.0053 (8)0.0317 (8)0.0051 (7)
C160.0463 (8)0.0755 (12)0.0553 (9)0.0049 (8)0.0226 (7)0.0018 (8)
C170.0418 (7)0.0650 (10)0.0591 (9)0.0018 (7)0.0298 (7)0.0040 (7)
N10.0398 (7)0.0847 (11)0.0497 (7)0.0076 (7)0.0256 (6)0.0055 (7)
N20.0342 (6)0.0364 (6)0.0536 (7)0.0010 (5)0.0177 (5)0.0058 (5)
O10.0380 (5)0.0394 (5)0.0685 (6)0.0048 (4)0.0339 (5)0.0072 (4)
O20.0542 (7)0.0928 (10)0.0513 (7)0.0044 (6)0.0170 (6)0.0071 (6)
O30.0611 (7)0.0984 (10)0.0919 (9)0.0169 (7)0.0550 (7)0.0151 (8)
O40.0699 (8)0.0988 (11)0.0971 (10)0.0359 (7)0.0567 (8)0.0084 (8)
O50.0896 (9)0.0395 (6)0.0671 (8)0.0070 (6)0.0294 (7)0.0080 (5)
O60.0747 (8)0.0542 (7)0.0984 (9)0.0033 (6)0.0632 (8)0.0199 (6)
Geometric parameters (Å, º) top
C1—O11.3405 (15)C10—H10A0.9600
C1—C61.3947 (18)C10—H10B0.9600
C1—C21.3993 (18)C10—H10C0.9600
C2—C31.3773 (17)C11—C121.464 (2)
C2—N21.4610 (16)C11—H110.9300
C3—C41.375 (2)C12—C171.394 (2)
C3—H30.9300C12—C131.3945 (19)
C4—C51.380 (2)C13—C141.378 (2)
C4—N11.4638 (17)C13—H130.9300
C5—C61.379 (2)C14—C151.376 (2)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.376 (2)
C7—O11.4565 (16)C15—H150.9300
C7—C81.4959 (19)C16—C171.381 (2)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—H170.9300
C8—C111.345 (2)N1—O41.2242 (18)
C8—C91.487 (2)N1—O31.2242 (19)
C9—O21.2176 (19)N2—O61.2156 (16)
C9—C101.502 (2)N2—O51.2198 (16)
O1—C1—C6124.58 (12)H10A—C10—H10B109.5
O1—C1—C2117.72 (11)C9—C10—H10C109.5
C6—C1—C2117.66 (12)H10A—C10—H10C109.5
C3—C2—C1122.31 (12)H10B—C10—H10C109.5
C3—C2—N2117.14 (11)C8—C11—C12129.87 (13)
C1—C2—N2120.55 (11)C8—C11—H11115.1
C4—C3—C2118.04 (12)C12—C11—H11115.1
C4—C3—H3121.0C17—C12—C13117.91 (13)
C2—C3—H3121.0C17—C12—C11118.36 (12)
C3—C4—C5121.58 (12)C13—C12—C11123.63 (13)
C3—C4—N1118.47 (13)C14—C13—C12120.53 (14)
C5—C4—N1119.95 (13)C14—C13—H13119.7
C6—C5—C4119.75 (13)C12—C13—H13119.7
C6—C5—H5120.1C15—C14—C13120.61 (14)
C4—C5—H5120.1C15—C14—H14119.7
C5—C6—C1120.54 (13)C13—C14—H14119.7
C5—C6—H6119.7C16—C15—C14119.88 (15)
C1—C6—H6119.7C16—C15—H15120.1
O1—C7—C8107.14 (11)C14—C15—H15120.1
O1—C7—H7A110.3C15—C16—C17119.79 (15)
C8—C7—H7A110.3C15—C16—H16120.1
O1—C7—H7B110.3C17—C16—H16120.1
C8—C7—H7B110.3C16—C17—C12121.26 (14)
H7A—C7—H7B108.5C16—C17—H17119.4
C11—C8—C9120.33 (12)C12—C17—H17119.4
C11—C8—C7124.35 (13)O4—N1—O3123.64 (13)
C9—C8—C7115.26 (13)O4—N1—C4117.88 (15)
O2—C9—C8120.24 (14)O3—N1—C4118.49 (13)
O2—C9—C10120.09 (14)O6—N2—O5124.41 (13)
C8—C9—C10119.67 (14)O6—N2—C2118.65 (12)
C9—C10—H10A109.5O5—N2—C2116.90 (12)
C9—C10—H10B109.5C1—O1—C7117.86 (10)
O1—C1—C2—C3173.75 (11)C8—C11—C12—C17150.23 (16)
C6—C1—C2—C33.9 (2)C8—C11—C12—C1333.5 (2)
O1—C1—C2—N25.24 (18)C17—C12—C13—C141.2 (2)
C6—C1—C2—N2177.08 (12)C11—C12—C13—C14177.53 (15)
C1—C2—C3—C43.50 (19)C12—C13—C14—C150.2 (3)
N2—C2—C3—C4177.48 (11)C13—C14—C15—C160.4 (3)
C2—C3—C4—C50.6 (2)C14—C15—C16—C170.1 (3)
C2—C3—C4—N1179.98 (11)C15—C16—C17—C121.1 (3)
C3—C4—C5—C61.8 (2)C13—C12—C17—C161.7 (2)
N1—C4—C5—C6177.66 (13)C11—C12—C17—C16178.17 (15)
C4—C5—C6—C11.3 (2)C3—C4—N1—O4176.08 (13)
O1—C1—C6—C5176.05 (13)C5—C4—N1—O44.5 (2)
C2—C1—C6—C51.5 (2)C3—C4—N1—O34.2 (2)
O1—C7—C8—C1194.16 (16)C5—C4—N1—O3175.29 (14)
O1—C7—C8—C988.75 (14)C3—C2—N2—O6137.34 (13)
C11—C8—C9—O2171.36 (15)C1—C2—N2—O643.62 (17)
C7—C8—C9—O25.9 (2)C3—C2—N2—O540.76 (17)
C11—C8—C9—C109.5 (2)C1—C2—N2—O5138.28 (13)
C7—C8—C9—C10173.26 (13)C6—C1—O1—C75.4 (2)
C9—C8—C11—C12178.44 (14)C2—C1—O1—C7172.16 (12)
C7—C8—C11—C124.6 (2)C8—C7—O1—C1178.57 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.413.1375 (18)135
C16—H16···O6ii0.932.583.292 (3)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.413.1375 (18)135
C16—H16···O6ii0.932.583.292 (3)134
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the data collection. The Brazilian agencies CNPq (306121/2013-1 to IC), CAPES (808/2009 to IC) and FAPESP (2012/22524-9 to SHM) are acknowledged for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com  Google Scholar
First citationDaszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron Asymmetry, 24, 973–981.  Google Scholar
First citationRodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295–303.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Maganhi, S. H., Moran, P. J. S., Paula, B. R. S. de, Nucci, P. R. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o1020–o1021.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1051-o1052
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds