organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,6-bis­­[(1H-pyrazol-1-yl)meth­yl]pyridine

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 25 July 2014; accepted 30 July 2014; online 6 August 2014)

In the title compound, C13H13N5, the planes of the pyrazolyl groups are nearly perpendicular to that of the central pyridine ring, making dihedral angles of 87.77 (8) and 85.73 (7)°. In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules into layers extending parallel to (10-1).

1. Related literature

For the synthesis of the title compound, see: Reger et al. (2005[Reger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181-1190.]). For metal complexes with similar ligands, see: Sharma et al. (2011[Sharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327-332.]); Ojwach et al. (2007[Ojwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851-861.]); Manikandan et al. (2000[Manikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). J. Chem. Soc. Dalton Trans. pp. 2779-2785.], 2001[Manikandan, P., Padmakumar, K., Justin Thomas, K. R., Varghese, B., Onodera, H. & Manoharan, P. T. (2001). Inorg. Chem. 40, 6930-6939.]); Halcrow & Kilner (2002[Halcrow, M. A. & Kilner, C. A. (2002). Acta Cryst. C58, m424-m426.]). For potential applications of the ligand in catalysis, see: Karam et al. (2005[Karam, A. R., Catari, E. L., Lopez-Linares, F., Agrifoglio, G., Albano, C. L., Diaz-Barrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., Gonzalez, T., Ortega, H. B. & Joskowics, P. (2005). Appl. Catal. A, 280, 165-173.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H13N5

  • Mr = 239.28

  • Monoclinic, P 21 /n

  • a = 7.481 (3) Å

  • b = 9.076 (4) Å

  • c = 19.021 (8) Å

  • β = 95.471 (5)°

  • V = 1285.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.26 × 0.2 × 0.15 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 25319 measured reflections

  • 3136 independent reflections

  • 2260 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.149

  • S = 1.09

  • 3136 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N15i 0.93 2.62 3.550 (3) 178
C6—H6B⋯N12ii 0.97 2.54 3.430 (2) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Related literature top

For the synthesis of the title compound, see: Reger et al. (2005). For metal complexes with similar ligands, see: Sharma et al. (2011); Ojwach et al. (2007); Manikandan et al. (2000, 2001); Halcrow & Kilner (2002). For potential applications of the ligand in catalysis, see: Karam et al. (2005).

Experimental top

To a stirred solution of 2,6-pyridinedimethanol (0.28 g, 2 mmol) and NaOH (0.8 g, 20 mmol) in THF/water (7.5/7.5 ml) was added a solution of p-toluenesulfonyl chloride (0.761 g, 4 mmol) in THF (7.5 ml) at 0 °C. After 4 h of stirring, the mixture was poured into 20 ml of water and extracted with methylene chloride. The organic phase was washed with saturated aqueous NaCl solution and distilled water and dried over Na2SO4, and the solvent was removed in vacuo to afford 2,6-pyridine-dimethylene-ditosylate (0.788 g, 88%) as a white powder. In a separate flask under a nitrogen atmosphere, a solution of pyrazole (0.22 g, 3.2 mmol) in dry THF (5 ml) was added dropwise to a suspension of NaH (0.08 g, 3.2 mmol) in dry THF (5 ml) at 0 °C. After 15 min of stirring, a clear solution of NaPz was obtained. A solution of 2,6-pyridine-dimethylene-ditosylate (0.73 g, 1.6 mmol) in dry THF (7.5 ml) was added to this solution; the mixture was stirred overnight and filtered, and the solvent was removed. The crude product was purified by column chromatography on silica gel with ethyl acetate as eluent to afford 0.30 g (76%) of pure ligand as a white solid. Single crystals of the title compound were obtained by slow diffusion of hexane into a concentrated solution of the white solid in THF at room temperature within 1–2 days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular C—H···N hydrogen bonds (dashed lines).
2,6-Bis[(1H-pyrazol-1-yl)methyl]pyridine top
Crystal data top
C13H13N5F(000) = 504
Mr = 239.28Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5271 reflections
a = 7.481 (3) Åθ = 2.2–25.5°
b = 9.076 (4) ŵ = 0.08 mm1
c = 19.021 (8) ÅT = 296 K
β = 95.471 (5)°Block, colourless
V = 1285.7 (9) Å30.26 × 0.2 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.040
Radiation source: fine-focus sealed tubeθmax = 28.2°, θmin = 2.2°
ϕ and ω scansh = 99
25319 measured reflectionsk = 1212
3136 independent reflectionsl = 2525
2260 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.4331P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.24 e Å3
163 parametersΔρmin = 0.28 e Å3
Crystal data top
C13H13N5V = 1285.7 (9) Å3
Mr = 239.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.481 (3) ŵ = 0.08 mm1
b = 9.076 (4) ÅT = 296 K
c = 19.021 (8) Å0.26 × 0.2 × 0.15 mm
β = 95.471 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2260 reflections with I > 2σ(I)
25319 measured reflectionsRint = 0.040
3136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
3136 reflectionsΔρmin = 0.28 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0152 (2)0.79070 (17)0.01406 (8)0.0502 (4)
C20.1286 (3)0.7141 (2)0.02875 (11)0.0576 (5)
H20.24030.68230.01720.069*
C30.0626 (3)0.6867 (2)0.09235 (11)0.0637 (6)
H30.11840.63510.13060.076*
C40.1019 (3)0.7512 (2)0.08738 (10)0.0569 (5)
H40.18210.75220.12180.068*
N50.12629 (18)0.81324 (15)0.02326 (8)0.0438 (4)
C60.2836 (2)0.88545 (19)0.01027 (11)0.0529 (5)
H6A0.24580.96610.03880.063*
H6B0.35120.92720.0260.063*
C70.4057 (2)0.78510 (17)0.05647 (9)0.0382 (4)
C80.3819 (2)0.63422 (19)0.05958 (10)0.0481 (4)
H80.28730.58850.03270.058*
C90.5017 (2)0.5534 (2)0.10339 (10)0.0544 (5)
H90.48890.45170.10650.065*
C100.6403 (2)0.62335 (19)0.14246 (9)0.0497 (4)
H100.72210.57030.17240.06*
C110.6554 (2)0.77450 (18)0.13620 (8)0.0424 (4)
N120.53963 (18)0.85448 (15)0.09409 (7)0.0402 (3)
C130.8035 (3)0.8643 (2)0.17501 (11)0.0619 (5)
H13A0.86280.92110.14080.074*
H13B0.75030.93340.20590.074*
N140.9367 (2)0.77839 (17)0.21661 (8)0.0504 (4)
N150.9129 (2)0.7377 (2)0.28293 (8)0.0620 (5)
C161.0538 (3)0.6541 (3)0.30142 (12)0.0687 (6)
H161.07540.610.34550.082*
C171.1637 (3)0.6396 (3)0.24904 (14)0.0860 (8)
H171.26980.58590.250.103*
C181.0849 (3)0.7199 (3)0.19552 (12)0.0785 (7)
H181.12690.73230.15140.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0469 (8)0.0497 (9)0.0545 (9)0.0040 (7)0.0074 (7)0.0014 (7)
C20.0445 (10)0.0549 (11)0.0728 (13)0.0086 (9)0.0029 (9)0.0026 (10)
C30.0622 (13)0.0643 (13)0.0615 (13)0.0056 (10)0.0110 (10)0.0094 (10)
C40.0613 (12)0.0639 (12)0.0458 (10)0.0064 (10)0.0063 (9)0.0065 (9)
N50.0406 (7)0.0410 (8)0.0486 (8)0.0031 (6)0.0016 (6)0.0103 (6)
C60.0475 (10)0.0387 (9)0.0696 (12)0.0087 (8)0.0093 (9)0.0157 (8)
C70.0357 (8)0.0361 (8)0.0435 (9)0.0018 (6)0.0068 (7)0.0050 (7)
C80.0437 (9)0.0375 (9)0.0616 (11)0.0065 (7)0.0034 (8)0.0042 (8)
C90.0583 (11)0.0314 (8)0.0721 (13)0.0021 (8)0.0015 (9)0.0070 (8)
C100.0550 (11)0.0414 (9)0.0512 (10)0.0062 (8)0.0033 (8)0.0083 (8)
C110.0476 (9)0.0409 (9)0.0385 (8)0.0012 (7)0.0025 (7)0.0003 (7)
N120.0441 (8)0.0340 (7)0.0419 (7)0.0017 (6)0.0015 (6)0.0032 (6)
C130.0706 (13)0.0468 (11)0.0633 (12)0.0017 (9)0.0204 (10)0.0002 (9)
N140.0540 (9)0.0551 (9)0.0396 (8)0.0044 (7)0.0075 (7)0.0015 (7)
N150.0639 (10)0.0806 (12)0.0411 (9)0.0067 (9)0.0033 (8)0.0023 (8)
C160.0755 (14)0.0739 (14)0.0521 (12)0.0096 (12)0.0173 (11)0.0148 (11)
C170.0613 (14)0.115 (2)0.0787 (17)0.0220 (14)0.0098 (13)0.0017 (15)
C180.0617 (13)0.121 (2)0.0539 (13)0.0083 (14)0.0119 (11)0.0059 (13)
Geometric parameters (Å, º) top
N1—C21.317 (2)C9—H90.93
N1—N51.345 (2)C10—C111.383 (2)
C2—C31.372 (3)C10—H100.93
C2—H20.93C11—N121.336 (2)
C3—C41.358 (3)C11—C131.511 (2)
C3—H30.93C13—N141.441 (2)
C4—N51.340 (2)C13—H13A0.97
C4—H40.93C13—H13B0.97
N5—C61.442 (2)N14—C181.326 (3)
C6—C71.511 (2)N14—N151.343 (2)
C6—H6A0.97N15—C161.319 (3)
C6—H6B0.97C16—C171.357 (3)
C7—N121.332 (2)C16—H160.93
C7—C81.383 (2)C17—C181.342 (3)
C8—C91.376 (2)C17—H170.93
C8—H80.93C18—H180.93
C9—C101.372 (2)
C2—N1—N5104.28 (15)C8—C9—H9120.1
N1—C2—C3112.10 (18)C9—C10—C11118.44 (16)
N1—C2—H2123.9C9—C10—H10120.8
C3—C2—H2123.9C11—C10—H10120.8
C4—C3—C2105.09 (18)N12—C11—C10122.49 (16)
C4—C3—H3127.5N12—C11—C13113.78 (15)
C2—C3—H3127.5C10—C11—C13123.73 (16)
N5—C4—C3106.77 (18)C7—N12—C11118.43 (14)
N5—C4—H4126.6N14—C13—C11114.41 (16)
C3—C4—H4126.6N14—C13—H13A108.7
C4—N5—N1111.76 (15)C11—C13—H13A108.7
C4—N5—C6128.93 (17)N14—C13—H13B108.7
N1—N5—C6119.07 (15)C11—C13—H13B108.7
N5—C6—C7113.96 (14)H13A—C13—H13B107.6
N5—C6—H6A108.8C18—N14—N15111.34 (17)
C7—C6—H6A108.8C18—N14—C13127.23 (18)
N5—C6—H6B108.8N15—N14—C13121.22 (17)
C7—C6—H6B108.8C16—N15—N14103.57 (17)
H6A—C6—H6B107.7N15—C16—C17112.7 (2)
N12—C7—C8122.57 (15)N15—C16—H16123.7
N12—C7—C6114.16 (14)C17—C16—H16123.7
C8—C7—C6123.27 (15)C18—C17—C16104.5 (2)
C9—C8—C7118.33 (16)C18—C17—H17127.7
C9—C8—H8120.8C16—C17—H17127.7
C7—C8—H8120.8N14—C18—C17107.9 (2)
C10—C9—C8119.73 (16)N14—C18—H18126
C10—C9—H9120.1C17—C18—H18126
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N15i0.932.623.550 (3)178
C6—H6B···N12ii0.972.543.430 (2)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N15i0.932.623.550 (3)178
C6—H6B···N12ii0.972.543.430 (2)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+2, z.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalcrow, M. A. & Kilner, C. A. (2002). Acta Cryst. C58, m424–m426.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaram, A. R., Catari, E. L., Lopez-Linares, F., Agrifoglio, G., Albano, C. L., Diaz-Barrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., Gonzalez, T., Ortega, H. B. & Joskowics, P. (2005). Appl. Catal. A, 280, 165–173.  Web of Science CrossRef CAS Google Scholar
First citationManikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). J. Chem. Soc. Dalton Trans. pp. 2779–2785.  Web of Science CSD CrossRef Google Scholar
First citationManikandan, P., Padmakumar, K., Justin Thomas, K. R., Varghese, B., Onodera, H. & Manoharan, P. T. (2001). Inorg. Chem. 40, 6930–6939.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOjwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F. & Smith, M. D. (2005). Cryst. Growth Des. 5, 1181–1190.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, A. K., De, A., Balamurugan, V. & Mukherjee, R. (2011). Inorg. Chim. Acta, 372, 327–332.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds