organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-allyl­sulfanyl-1H-pyrazolo­[3,4-d]pyrimidine

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr

Edited by H. Ishida, Okayama University, Japan (Received 27 July 2014; accepted 6 August 2014; online 23 August 2014)

In the title compound, C8H8N4S, the pyrazolo­[3,4-d]pyrimidine ring system is essentially planar, with a maximum deviation from the mean plane of 0.025 (3) Å. The allyl group is disordered over two sites in a 0.512 (6):0.488 (6) ratio. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) graph-set motif.

1. Related literature

Anti­viral, anti­mycobacterial and anti­cancer properties of pyrazolo­[3,4-d]pyrimidine-4(5H)-thione derivatives are described, respectively, by Yuan et al. (2013[Yuan, L., Chang, W. S., Cai, H., Ying, L., Dong, L. & Shu, F. Y. (2013). Eur. J. Med. Chem. 67, 152-157.]), Ballell et al. (2007[Ballell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736-1740.]) and Rashad et al. (2011[Rashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019-1026.]), and Alsubari et al. (2011[Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.]). A similar structure, namely 4-benzyl­sulfanyl-1H-pyrazolo­[3,4-d]pyrimidine, is reported by El Fal et al. (2013[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H8N4S

  • Mr = 192.24

  • Orthorhombic, P b c n

  • a = 18.537 (6) Å

  • b = 5.1997 (17) Å

  • c = 19.059 (7) Å

  • V = 1837.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.641, Tmax = 0.746

  • 20928 measured reflections

  • 2189 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.068

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.181

  • S = 1.02

  • 2189 reflections

  • 128 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.09 2.940 (4) 172
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

Antiviral, antimycobacterial and anticancer properties of pyrazolo[3,4-d]pyrimidine-4(5H)-thione derivatives are described, respectively, by Yuan et al. (2013), Ballell et al. (2007) and Rashad et al. (2011), and Alsubari et al. (2011). A similar structure, namely 4-benzylsulfanyl-1H-pyrazolo[3,4-d]pyrimidine, is reported by El Fal et al. (2013).

Experimental top

1H,5H-pyrazolo[3,4-d]pyrimidine-4-thione (0.5 g, 3.29 mmol), allyl bromide (0.5 ml, 5.70 mmol) and potassium carbonate (0.64 g, 4.8 mmol) with a catalytic amount of tetra-n-butylammonium bromide were stirred in DMF (15 ml) for 72 h. The solid obtained was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford yellow crystals in 55% yield.

Refinement top

The allyl group is disordered over two sites with refined occupancies of 0.512 (6) and 0.488 (6). For the disordered group, tight distance restraints of S—C = 1.753 (2) Å, C—C = 1.453 (2) Å and CC = 1.287 (2) Å, and constraint of same displacement parameters were applied. The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and N—H = 0.86 Å (N–H), and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis, showing molecules linked through N3–H3N···N2 hydrogen bond (dashed lines).
4-Allylsulfanyl-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C8H8N4SF(000) = 800
Mr = 192.24Dx = 1.390 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2n 2abCell parameters from 2189 reflections
a = 18.537 (6) Åθ = 2.4–27.9°
b = 5.1997 (17) ŵ = 0.31 mm1
c = 19.059 (7) ÅT = 296 K
V = 1837.0 (11) Å3Block, yellow
Z = 80.39 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX
diffractometer
2189 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1524
Tmin = 0.641, Tmax = 0.746k = 66
20928 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.5307P]
where P = (Fo2 + 2Fc2)/3
2189 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.28 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H8N4SV = 1837.0 (11) Å3
Mr = 192.24Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 18.537 (6) ŵ = 0.31 mm1
b = 5.1997 (17) ÅT = 296 K
c = 19.059 (7) Å0.39 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX
diffractometer
2189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1093 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.746Rint = 0.068
20928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0566 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
2189 reflectionsΔρmin = 0.31 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.66313 (5)0.15662 (17)0.85306 (5)0.0890 (4)
N10.53488 (15)0.3882 (5)0.85359 (15)0.0819 (8)
N20.49883 (12)0.7352 (5)0.92947 (15)0.0759 (8)
N30.58954 (12)0.8446 (5)1.01342 (15)0.0760 (8)
H3N0.56670.96801.03370.091*
N40.65714 (13)0.7630 (6)1.03189 (17)0.0867 (9)
C10.48931 (17)0.5665 (7)0.8781 (2)0.0887 (10)
H10.44460.57300.85610.106*
C20.56370 (15)0.7078 (5)0.96002 (17)0.0639 (8)
C30.67252 (15)0.5738 (7)0.98923 (19)0.0787 (9)
H30.71540.48120.99020.094*
C40.61592 (14)0.5282 (5)0.94180 (17)0.0654 (8)
C50.59890 (15)0.3712 (5)0.88464 (18)0.0710 (9)
C6A0.6154 (5)0.011 (2)0.7877 (4)0.1188 (19)0.512 (6)
H6A10.61400.19150.79990.143*0.512 (6)
H6A20.56600.05150.78690.143*0.512 (6)
C7A0.6458 (4)0.0154 (16)0.7178 (5)0.0919 (15)0.512 (6)
H7A0.63850.17220.69540.110*0.512 (6)
C8A0.682 (3)0.155 (6)0.6835 (9)0.121 (3)0.512 (6)
H8A10.69060.31510.70350.145*0.512 (6)
H8A20.69890.11790.63880.145*0.512 (6)
C6B0.6188 (5)0.019 (2)0.7806 (4)0.1188 (19)0.488 (6)
H6B10.57490.06280.79730.143*0.488 (6)
H6B20.60460.15630.74910.143*0.488 (6)
C7B0.6598 (4)0.1692 (16)0.7409 (5)0.0919 (15)0.488 (6)
H7B0.67570.31110.76630.110*0.488 (6)
C8B0.677 (3)0.168 (7)0.6756 (10)0.121 (3)0.488 (6)
H8B10.66340.03130.64700.145*0.488 (6)
H8B20.70420.30240.65690.145*0.488 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0830 (6)0.0671 (6)0.1169 (9)0.0018 (4)0.0180 (5)0.0160 (5)
N10.0756 (16)0.0624 (16)0.108 (2)0.0024 (13)0.0034 (15)0.0048 (15)
N20.0599 (14)0.0576 (15)0.110 (2)0.0017 (11)0.0054 (14)0.0014 (16)
N30.0589 (13)0.0613 (15)0.108 (2)0.0089 (11)0.0049 (14)0.0078 (15)
N40.0621 (15)0.083 (2)0.115 (2)0.0106 (13)0.0057 (14)0.0153 (18)
C10.0683 (18)0.073 (2)0.124 (3)0.0002 (17)0.0086 (19)0.000 (2)
C20.0604 (15)0.0472 (15)0.084 (2)0.0016 (12)0.0065 (15)0.0029 (15)
C30.0630 (17)0.069 (2)0.104 (3)0.0116 (14)0.0028 (17)0.009 (2)
C40.0584 (15)0.0511 (16)0.087 (2)0.0005 (12)0.0069 (15)0.0023 (16)
C50.0704 (18)0.0502 (17)0.092 (2)0.0041 (14)0.0122 (17)0.0058 (17)
C6A0.103 (3)0.098 (4)0.155 (4)0.023 (3)0.038 (3)0.054 (3)
C7A0.094 (3)0.076 (4)0.106 (4)0.009 (3)0.019 (3)0.018 (3)
C8A0.102 (6)0.167 (5)0.093 (5)0.012 (4)0.007 (6)0.010 (5)
C6B0.103 (3)0.098 (4)0.155 (4)0.023 (3)0.038 (3)0.054 (3)
C7B0.094 (3)0.076 (4)0.106 (4)0.009 (3)0.019 (3)0.018 (3)
C8B0.102 (6)0.167 (5)0.093 (5)0.012 (4)0.007 (6)0.010 (5)
Geometric parameters (Å, º) top
S1—C51.739 (3)C4—C51.397 (4)
S1—C6A1.759 (2)C6A—C7A1.452 (2)
S1—C6B1.759 (2)C6A—H6A10.9700
N1—C51.329 (4)C6A—H6A20.9700
N1—C11.339 (4)C7A—C8A1.287 (2)
N2—C11.326 (4)C7A—H7A0.9300
N2—C21.344 (4)C8A—H8A10.9300
N3—C21.331 (4)C8A—H8A20.9300
N3—N41.369 (3)C6B—C7B1.453 (2)
N3—H3N0.8600C6B—H6B10.9700
N4—C31.308 (4)C6B—H6B20.9700
C1—H10.9300C7B—C8B1.287 (2)
C2—C41.389 (4)C7B—H7B0.9300
C3—C41.405 (4)C8B—H8B10.9300
C3—H30.9300C8B—H8B20.9300
C5—S1—C6A102.6 (4)C7A—C6A—H6A1108.7
C5—S1—C6B102.3 (4)S1—C6A—H6A1108.7
C5—N1—C1117.0 (3)C7A—C6A—H6A2108.7
C1—N2—C2111.6 (3)S1—C6A—H6A2108.7
C2—N3—N4111.1 (3)H6A1—C6A—H6A2107.6
C2—N3—H3N124.4C8A—C7A—C6A127.1 (11)
N4—N3—H3N124.4C8A—C7A—H7A116.5
C3—N4—N3105.8 (3)C6A—C7A—H7A116.5
N2—C1—N1129.2 (3)C7A—C8A—H8A1120.0
N2—C1—H1115.4C7A—C8A—H8A2120.0
N1—C1—H1115.4H8A1—C8A—H8A2120.0
N3—C2—N2126.7 (3)C7B—C6B—S1116.0 (7)
N3—C2—C4107.4 (3)C7B—C6B—H6B1108.3
N2—C2—C4125.9 (3)S1—C6B—H6B1108.3
N4—C3—C4111.4 (3)C7B—C6B—H6B2108.3
N4—C3—H3124.3S1—C6B—H6B2108.3
C4—C3—H3124.3H6B1—C6B—H6B2107.4
C2—C4—C5115.5 (3)C8B—C7B—C6B129.2 (10)
C2—C4—C3104.2 (3)C8B—C7B—H7B115.4
C5—C4—C3140.2 (3)C6B—C7B—H7B115.4
N1—C5—C4120.7 (3)C7B—C8B—H8B1120.0
N1—C5—S1120.0 (3)C7B—C8B—H8B2120.0
C4—C5—S1119.3 (2)H8B1—C8B—H8B2120.0
C7A—C6A—S1114.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.092.940 (4)172
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.092.940 (4)172
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAlsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBallell, L., Field, R. A., Chung, G. A. C. & Young, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 1736–1740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRashad, A. E., Abeer, E. M. & Mamdouh, M. A. (2011). Eur. J. Med. Chem. 46, 1019–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, L., Chang, W. S., Cai, H., Ying, L., Dong, L. & Shu, F. Y. (2013). Eur. J. Med. Chem. 67, 152–157.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds