organic compounds
of 4-chloro-2-iodoaniline
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
In the 6H5ClIN, the amino group engages in N—H⋯N hydrogen bonding, creating [100] chains. A Cl⋯I contact is observed [3.7850 (16) Å]. The parallel planes of neigbouring molecules reveal highly offset π-stacking characterized by a centroid–centroid distance of 4.154 (1), a centroid-to-plane distance of 3.553 (3) and ring-offset slippage of 2.151 (6) Å.
of the title compound, CKeywords: crystal structure; halogen–halogen interaction; aniline; π-stacking.
CCDC reference: 1015344
1. Related literature
For the synthesis and vibrational spectroscopic analysis of 4-chloro-2-iodoaniline, see: Hoque et al. (2013). For the dehalogenation of dihalogenated anilines in human liver microsomes, see: Zhang et al. (2011). For the crystal structures of related monohalogenated anilines, see: Trotter et al. (1966); Parkin et al. (2005) and of dihalogenated anilines, see: Xu et al. (2008). For halogen–halogen interactions, see: Pedireddi et al. (1994) and for π-stacking, see: Lueckheide et al. (2013). For van der Waals radii, see: Bondi (1964).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).
Supporting information
CCDC reference: 1015344
10.1107/S1600536814016869/jj2191sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814016869/jj2191Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814016869/jj2191Isup3.cml
Dihalogenated anilines such as the title compound exhibit different toxicities depending on the identity, number and substitution pattern of the halogens on the aniline ring, and the mechanism of halogen activiation in differently substituted dihalogenated anilines by glutathione has been studied using human liver microsomes (Zhang et al., 2011). The title compound may be synthesized using selective ortho-iodination of 4-chloroaniline (Hoque et al., 2013). The C—Cl and C—I bond lengths of 1.755 (6) Å and 2.101 (5) Å in the title compound (Fig. 1) are similar to those found in the corresponding mono-substituted anilines, 4-chloroaniline with C—Cl bond length 1.75 Å (Trotter et al., 1966) and 2-iodoaniline with C—I bond length 2.103 (7) Å (Parkin et al., 2005). Further, the C—Cl and C—I bond lengths are similar to those found in the isomer where the positions of the halides are reversed, 2-chloro-4-iodoaniline, with C—Cl bond length 1.742 (4) Å and C—I bond length 2.103 (4) Å (Xu et al., 2008).
In the structure of the titular compound, cooperative intermolecular hydrogen bonding with one of the two amine protons, H2, links the molecules into a one-dimensional chain running down the crystallographic a-axis (Fig. 2, Table 1). The other amine proton, H1, does not engage in any significant hydrogen bonding interaction. There is also an intermolecular halogen-halogen interaction between chlorine and iodine, with a Cl···Ii distance of 3.7850 (16) Å (Fig. 3) which is slightly longer than the sum of the van der Waals radii of chlorine and iodine, 3.73 Å (Bondi, 1964) [symmetry code (i): x - 1/2, -y + 3/2, -z]. For a discussion of halogen···halogen interactions, see Pedireddi et al., 1994. The parallel planes of neigboring aromatic molecules reveal a highly offset face-to-face π-stacking (Fig. 3) characterized by a ring centroid-to-centroid distance of 4.154 (1) Å, centroid-to-plane distance of 3.553 (3) Å, and ring-offset slippage parameter of 2.151 (6) Å (Lueckheide et al., 2013).
Crystalline 4-Chloro-2-iodoaniline (I) was purchased from Aldrich Chemical Company, USA.
Crystal data, data collection and structure
details are summarized in Table 1. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl C-atoms. The hydrogen atoms on nitrogen were located in the difference map and refined semifreely with the help of a distance restraint, d(N—H) 0.90 (2) Å and Uiso(H) = 1.2 × Ueq(N). The extinction parameter (EXTI) refined to zero and was removed from the refinement.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).C6H5ClIN | F(000) = 472 |
Mr = 253.46 | Dx = 2.249 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5580 reflections |
a = 4.1538 (4) Å | θ = 2.2–30.3° |
b = 11.3685 (11) Å | µ = 4.54 mm−1 |
c = 15.8550 (16) Å | T = 125 K |
V = 748.71 (13) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.10 × 0.05 mm |
Bruker APEXII CCD diffractometer | 2281 independent reflections |
Radiation source: fine-focus sealed tube | 2007 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 2.2° |
ϕ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | k = −16→16 |
Tmin = 0.56, Tmax = 0.81 | l = −22→22 |
11850 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0156P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2281 reflections | Δρmax = 0.96 e Å−3 |
88 parameters | Δρmin = −1.03 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 742 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (3) |
C6H5ClIN | V = 748.71 (13) Å3 |
Mr = 253.46 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.1538 (4) Å | µ = 4.54 mm−1 |
b = 11.3685 (11) Å | T = 125 K |
c = 15.8550 (16) Å | 0.20 × 0.10 × 0.05 mm |
Bruker APEXII CCD diffractometer | 2281 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2007 reflections with I > 2σ(I) |
Tmin = 0.56, Tmax = 0.81 | Rint = 0.066 |
11850 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.053 | Δρmax = 0.96 e Å−3 |
S = 1.02 | Δρmin = −1.03 e Å−3 |
2281 reflections | Absolute structure: Flack x determined using 742 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
88 parameters | Absolute structure parameter: −0.03 (3) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
I1 | 1.19309 (8) | 0.92075 (3) | −0.09588 (2) | 0.02161 (9) | |
Cl1 | 1.0100 (4) | 0.80636 (12) | 0.24943 (10) | 0.0322 (3) | |
N1 | 0.8012 (13) | 1.1528 (4) | −0.0258 (3) | 0.0236 (9) | |
H1 | 0.795 (14) | 1.124 (5) | −0.0783 (19) | 0.028* | |
H2 | 0.625 (10) | 1.196 (4) | −0.017 (4) | 0.028* | |
C1 | 0.8463 (11) | 1.0685 (4) | 0.0375 (3) | 0.0187 (10) | |
C2 | 1.0139 (12) | 0.9638 (4) | 0.0242 (3) | 0.0167 (10) | |
C3 | 1.0695 (12) | 0.8840 (4) | 0.0886 (3) | 0.0190 (10) | |
H3 | 1.1867 | 0.8136 | 0.0784 | 0.023* | |
C4 | 0.9513 (13) | 0.9087 (5) | 0.1680 (3) | 0.0233 (11) | |
C5 | 0.7803 (14) | 1.0111 (5) | 0.1839 (4) | 0.0255 (12) | |
H5 | 0.6977 | 1.0266 | 0.2387 | 0.031* | |
C6 | 0.7316 (12) | 1.0906 (4) | 0.1191 (3) | 0.0228 (11) | |
H6 | 0.6182 | 1.1615 | 0.1301 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01729 (14) | 0.02359 (15) | 0.02395 (16) | 0.00030 (14) | 0.00153 (14) | −0.00153 (15) |
Cl1 | 0.0468 (9) | 0.0259 (7) | 0.0238 (7) | 0.0013 (7) | −0.0056 (6) | 0.0049 (6) |
N1 | 0.027 (2) | 0.0132 (19) | 0.031 (3) | 0.003 (2) | −0.001 (3) | 0.0002 (18) |
C1 | 0.014 (2) | 0.013 (2) | 0.029 (3) | −0.002 (2) | −0.003 (2) | −0.001 (2) |
C2 | 0.015 (3) | 0.016 (2) | 0.019 (3) | −0.0008 (19) | −0.001 (2) | −0.002 (2) |
C3 | 0.018 (2) | 0.014 (2) | 0.024 (3) | 0.0009 (18) | −0.003 (2) | −0.003 (2) |
C4 | 0.025 (3) | 0.021 (3) | 0.024 (3) | −0.003 (3) | −0.004 (2) | 0.002 (2) |
C5 | 0.026 (3) | 0.026 (3) | 0.025 (3) | −0.003 (2) | 0.001 (2) | −0.004 (2) |
C6 | 0.023 (3) | 0.015 (2) | 0.030 (3) | 0.002 (2) | −0.001 (2) | −0.007 (2) |
I1—C2 | 2.101 (5) | C2—C3 | 1.386 (7) |
Cl1—C4 | 1.755 (6) | C3—C4 | 1.380 (7) |
Cl1—I1i | 3.7850 (16) | C3—H3 | 0.95 |
N1—C1 | 1.400 (7) | C4—C5 | 1.387 (8) |
N1—H1 | 0.90 (2) | C5—C6 | 1.383 (7) |
N1—H2 | 0.90 (2) | C5—H5 | 0.95 |
C1—C2 | 1.395 (7) | C6—H6 | 0.95 |
C1—C6 | 1.402 (7) | ||
Cl1···I1i | 3.7850 (16) | ||
C4—Cl1—I1i | 86.03 (18) | C4—C3—H3 | 120.7 |
C1—N1—H1 | 115 (4) | C2—C3—H3 | 120.7 |
C1—N1—H2 | 112 (4) | C3—C4—C5 | 121.3 (5) |
H1—N1—H2 | 109 (5) | C3—C4—Cl1 | 119.1 (4) |
C2—C1—N1 | 122.9 (5) | C5—C4—Cl1 | 119.6 (4) |
C2—C1—C6 | 117.5 (5) | C6—C5—C4 | 119.2 (5) |
N1—C1—C6 | 119.5 (5) | C6—C5—H5 | 120.4 |
C3—C2—C1 | 122.0 (5) | C4—C5—H5 | 120.4 |
C3—C2—I1 | 117.2 (4) | C5—C6—C1 | 121.3 (5) |
C1—C2—I1 | 120.8 (4) | C5—C6—H6 | 119.4 |
C4—C3—C2 | 118.7 (5) | C1—C6—H6 | 119.4 |
N1—C1—C2—C3 | 176.8 (5) | I1i—Cl1—C4—C3 | −49.3 (4) |
C6—C1—C2—C3 | −0.5 (7) | I1i—Cl1—C4—C5 | 129.0 (4) |
N1—C1—C2—I1 | −3.3 (7) | C3—C4—C5—C6 | −0.9 (8) |
C6—C1—C2—I1 | 179.4 (4) | Cl1—C4—C5—C6 | −179.2 (4) |
C1—C2—C3—C4 | 0.8 (8) | C4—C5—C6—C1 | 1.2 (8) |
I1—C2—C3—C4 | −179.1 (4) | C2—C1—C6—C5 | −0.5 (7) |
C2—C3—C4—C5 | −0.1 (8) | N1—C1—C6—C5 | −177.9 (5) |
C2—C3—C4—Cl1 | 178.2 (4) |
Symmetry code: (i) x−1/2, −y+3/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···N1ii | 0.90 (2) | 2.28 (3) | 3.142 (6) | 161 (5) |
Symmetry code: (ii) x−1/2, −y+5/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···N1ii | 0.90 (2) | 2.28 (3) | 3.142 (6) | 161 (5) |
Symmetry code: (ii) x−1/2, −y+5/2, −z. |
Acknowledgements
This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hoque, M. M., Halim, M. A., Rahman, M. M. & Hossain, M. I. (2013). J. Mol. Struct. 1054–1055, 367–374. Web of Science CrossRef CAS Google Scholar
Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087–o1089. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trotter, J., Whitlow, S. H. & Zobel, T. (1966). J. Chem. Soc. A, p. 353. CSD CrossRef Web of Science Google Scholar
Xu, Y.-H., Wang, C. & Qu, F. (2008). Acta Cryst. E64, o2300. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, C., Kenny, J. R., Le, H., Deese, A., Ford, K. A., Lightning, L. K., Fan, P. W., Driscoll, J. P., Halladay, J. S., Hop, C. E. C. A. & Khojasteh, S. C. (2011). Chem. Res. Toxicol. 24, 1668–1677. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.