organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o944-o945

Crystal structure of 4-chloro-2-iodo­aniline

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by J. Jasinski, Keene State College, USA (Received 17 July 2014; accepted 21 July 2014; online 1 August 2014)

In the crystal structure of the title compound, C6H5ClIN, the amino group engages in N—H⋯N hydrogen bonding, creating [100] chains. A Cl⋯I contact is observed [3.7850 (16) Å]. The parallel planes of neigbouring mol­ecules reveal highly offset π-stacking characterized by a centroid–centroid distance of 4.154 (1), a centroid-to-plane distance of 3.553 (3) and ring-offset slippage of 2.151 (6) Å.

1. Related literature

For the synthesis and vibrational spectroscopic analysis of 4-chloro-2-iodo­aniline, see: Hoque et al. (2013[Hoque, M. M., Halim, M. A., Rahman, M. M. & Hossain, M. I. (2013). J. Mol. Struct. 1054-1055, 367-374.]). For the dehalo­genation of dihalogenated anilines in human liver microsomes, see: Zhang et al. (2011[Zhang, C., Kenny, J. R., Le, H., Deese, A., Ford, K. A., Lightning, L. K., Fan, P. W., Driscoll, J. P., Halladay, J. S., Hop, C. E. C. A. & Khojasteh, S. C. (2011). Chem. Res. Toxicol. 24, 1668-1677.]). For the crystal structures of related monohalogenated anilines, see: Trotter et al. (1966[Trotter, J., Whitlow, S. H. & Zobel, T. (1966). J. Chem. Soc. A, p. 353.]); Parkin et al. (2005[Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.]) and of dihalogenated anilines, see: Xu et al. (2008[Xu, Y.-H., Wang, C. & Qu, F. (2008). Acta Cryst. E64, o2300.]). For halogen–halogen inter­actions, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) and for π-stacking, see: Lueckheide et al. (2013[Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79-84.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H5ClIN

  • Mr = 253.46

  • Orthorhombic, P 21 21 21

  • a = 4.1538 (4) Å

  • b = 11.3685 (11) Å

  • c = 15.8550 (16) Å

  • V = 748.71 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 125 K

  • 0.20 × 0.10 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.56, Tmax = 0.81

  • 11850 measured reflections

  • 2281 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.053

  • S = 1.02

  • 2281 reflections

  • 88 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.03 e Å−3

  • Absolute structure: Flack x determined using 742 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯N1ii 0.90 (2) 2.28 (3) 3.142 (6) 161 (5)
Symmetry code: (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL2014, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Structural commentary top

Dihalogenated anilines such as the title compound exhibit different toxicities depending on the identity, number and substitution pattern of the halogens on the aniline ring, and the mechanism of halogen activiation in differently substituted dihalogenated anilines by gluta­thione has been studied using human liver microsomes (Zhang et al., 2011). The title compound may be synthesized using selective ortho-iodination of 4-chloro­aniline (Hoque et al., 2013). The C—Cl and C—I bond lengths of 1.755 (6) Å and 2.101 (5) Å in the title compound (Fig. 1) are similar to those found in the corresponding mono-substituted anilines, 4-chloro­aniline with C—Cl bond length 1.75 Å (Trotter et al., 1966) and 2-iodo­aniline with C—I bond length 2.103 (7) Å (Parkin et al., 2005). Further, the C—Cl and C—I bond lengths are similar to those found in the isomer where the positions of the halides are reversed, 2-chloro-4-iodo­aniline, with C—Cl bond length 1.742 (4) Å and C—I bond length 2.103 (4) Å (Xu et al., 2008).

In the structure of the titular compound, cooperative inter­molecular hydrogen bonding with one of the two amine protons, H2, links the molecules into a one-dimensional chain running down the crystallographic a-axis (Fig. 2, Table 1). The other amine proton, H1, does not engage in any significant hydrogen bonding inter­action. There is also an inter­molecular halogen-halogen inter­action between chlorine and iodine, with a Cl···Ii distance of 3.7850 (16) Å (Fig. 3) which is slightly longer than the sum of the van der Waals radii of chlorine and iodine, 3.73 Å (Bondi, 1964) [symmetry code (i): x - 1/2, -y + 3/2, -z]. For a discussion of halogen···halogen inter­actions, see Pedireddi et al., 1994. The parallel planes of neigboring aromatic molecules reveal a highly offset face-to-face π-stacking (Fig. 3) characterized by a ring centroid-to-centroid distance of 4.154 (1) Å, centroid-to-plane distance of 3.553 (3) Å, and ring-offset slippage parameter of 2.151 (6) Å (Lueckheide et al., 2013).

Synthesis and crystallization top

Crystalline 4-Chloro-2-iodo­aniline (I) was purchased from Aldrich Chemical Company, USA.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl C-atoms. The hydrogen atoms on nitro­gen were located in the difference map and refined semifreely with the help of a distance restraint, d(N—H) 0.90 (2) Å and Uiso(H) = 1.2 × Ueq(N). The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Related literature top

For the synthesis and vibrational spectroscopic analysis of 4-chloro-2-iodoaniline, see: Hoque et al. (2013). For the dehalogenation of dihalogenated anilines in human liver microsomes, see: Zhang et al. (2011). For the crystal structures of related monohalogenated anilines, see: Trotter et al. (1966); Parkin et al. (2005) and of dihalogenated anilines, see: Xu et al. (2008). For halogen–halogen interactions, see: Pedireddi et al. (1994) and for π-stacking, see: Lueckheide et al. (2013). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the hydrogen bonding in 4-Chloro-2-iodoaniline forming a chain parallel to the crystallographic a-axis. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms on carbon removed for clarity. For symmetry code (ii), see Table 1.
[Figure 3] Fig. 3. A view of the offset face-to-face π-stacking and Cl···Ii contact (thick solid line) in the packing of 4-Chloro-2-iodoaniline. Displacement ellipsoids are shown at the 50% probability level. Symmetry code (i): x - 1/2, -y + 3/2, -z.
4-Chloro-2-iodoaniline top
Crystal data top
C6H5ClINF(000) = 472
Mr = 253.46Dx = 2.249 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5580 reflections
a = 4.1538 (4) Åθ = 2.2–30.3°
b = 11.3685 (11) ŵ = 4.54 mm1
c = 15.8550 (16) ÅT = 125 K
V = 748.71 (13) Å3Plate, colourless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2281 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.2°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1616
Tmin = 0.56, Tmax = 0.81l = 2222
11850 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0156P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2281 reflectionsΔρmax = 0.96 e Å3
88 parametersΔρmin = 1.03 e Å3
2 restraintsAbsolute structure: Flack x determined using 742 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C6H5ClINV = 748.71 (13) Å3
Mr = 253.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.1538 (4) ŵ = 4.54 mm1
b = 11.3685 (11) ÅT = 125 K
c = 15.8550 (16) Å0.20 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
2281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2007 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.81Rint = 0.066
11850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053Δρmax = 0.96 e Å3
S = 1.02Δρmin = 1.03 e Å3
2281 reflectionsAbsolute structure: Flack x determined using 742 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
88 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.19309 (8)0.92075 (3)0.09588 (2)0.02161 (9)
Cl11.0100 (4)0.80636 (12)0.24943 (10)0.0322 (3)
N10.8012 (13)1.1528 (4)0.0258 (3)0.0236 (9)
H10.795 (14)1.124 (5)0.0783 (19)0.028*
H20.625 (10)1.196 (4)0.017 (4)0.028*
C10.8463 (11)1.0685 (4)0.0375 (3)0.0187 (10)
C21.0139 (12)0.9638 (4)0.0242 (3)0.0167 (10)
C31.0695 (12)0.8840 (4)0.0886 (3)0.0190 (10)
H31.18670.81360.07840.023*
C40.9513 (13)0.9087 (5)0.1680 (3)0.0233 (11)
C50.7803 (14)1.0111 (5)0.1839 (4)0.0255 (12)
H50.69771.02660.23870.031*
C60.7316 (12)1.0906 (4)0.1191 (3)0.0228 (11)
H60.61821.16150.13010.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01729 (14)0.02359 (15)0.02395 (16)0.00030 (14)0.00153 (14)0.00153 (15)
Cl10.0468 (9)0.0259 (7)0.0238 (7)0.0013 (7)0.0056 (6)0.0049 (6)
N10.027 (2)0.0132 (19)0.031 (3)0.003 (2)0.001 (3)0.0002 (18)
C10.014 (2)0.013 (2)0.029 (3)0.002 (2)0.003 (2)0.001 (2)
C20.015 (3)0.016 (2)0.019 (3)0.0008 (19)0.001 (2)0.002 (2)
C30.018 (2)0.014 (2)0.024 (3)0.0009 (18)0.003 (2)0.003 (2)
C40.025 (3)0.021 (3)0.024 (3)0.003 (3)0.004 (2)0.002 (2)
C50.026 (3)0.026 (3)0.025 (3)0.003 (2)0.001 (2)0.004 (2)
C60.023 (3)0.015 (2)0.030 (3)0.002 (2)0.001 (2)0.007 (2)
Geometric parameters (Å, º) top
I1—C22.101 (5)C2—C31.386 (7)
Cl1—C41.755 (6)C3—C41.380 (7)
Cl1—I1i3.7850 (16)C3—H30.95
N1—C11.400 (7)C4—C51.387 (8)
N1—H10.90 (2)C5—C61.383 (7)
N1—H20.90 (2)C5—H50.95
C1—C21.395 (7)C6—H60.95
C1—C61.402 (7)
Cl1···I1i3.7850 (16)
C4—Cl1—I1i86.03 (18)C4—C3—H3120.7
C1—N1—H1115 (4)C2—C3—H3120.7
C1—N1—H2112 (4)C3—C4—C5121.3 (5)
H1—N1—H2109 (5)C3—C4—Cl1119.1 (4)
C2—C1—N1122.9 (5)C5—C4—Cl1119.6 (4)
C2—C1—C6117.5 (5)C6—C5—C4119.2 (5)
N1—C1—C6119.5 (5)C6—C5—H5120.4
C3—C2—C1122.0 (5)C4—C5—H5120.4
C3—C2—I1117.2 (4)C5—C6—C1121.3 (5)
C1—C2—I1120.8 (4)C5—C6—H6119.4
C4—C3—C2118.7 (5)C1—C6—H6119.4
N1—C1—C2—C3176.8 (5)I1i—Cl1—C4—C349.3 (4)
C6—C1—C2—C30.5 (7)I1i—Cl1—C4—C5129.0 (4)
N1—C1—C2—I13.3 (7)C3—C4—C5—C60.9 (8)
C6—C1—C2—I1179.4 (4)Cl1—C4—C5—C6179.2 (4)
C1—C2—C3—C40.8 (8)C4—C5—C6—C11.2 (8)
I1—C2—C3—C4179.1 (4)C2—C1—C6—C50.5 (7)
C2—C3—C4—C50.1 (8)N1—C1—C6—C5177.9 (5)
C2—C3—C4—Cl1178.2 (4)
Symmetry code: (i) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N1ii0.90 (2)2.28 (3)3.142 (6)161 (5)
Symmetry code: (ii) x1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N1ii0.90 (2)2.28 (3)3.142 (6)161 (5)
Symmetry code: (ii) x1/2, y+5/2, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoque, M. M., Halim, M. A., Rahman, M. M. & Hossain, M. I. (2013). J. Mol. Struct. 1054–1055, 367–374.  Web of Science CrossRef CAS Google Scholar
First citationLueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087–o1089.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrotter, J., Whitlow, S. H. & Zobel, T. (1966). J. Chem. Soc. A, p. 353.  CSD CrossRef Web of Science Google Scholar
First citationXu, Y.-H., Wang, C. & Qu, F. (2008). Acta Cryst. E64, o2300.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, C., Kenny, J. R., Le, H., Deese, A., Ford, K. A., Lightning, L. K., Fan, P. W., Driscoll, J. P., Halladay, J. S., Hop, C. E. C. A. & Khojasteh, S. C. (2011). Chem. Res. Toxicol. 24, 1668–1677.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o944-o945
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds