organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (S)-1-(1,3-benzo­thia­zol-2-yl)-2,2,2-tri­fluoro­ethanol

aSTC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, bInstitute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska St, Kyiv 02904, Ukraine, and cChemBioCenter, Kyiv National Taras Shevchenko University, 61 Chervonotkatska St, Kyiv 02094, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 June 2014; accepted 16 July 2014; online 1 August 2014)

In the title compound, C9H6F3NOS, the 1,3-benzo­thia­zole ring system is essentially planar, with an r.m.s. deviation of 0.006 Å. In the crystal, mol­ecules are linked via O—H⋯N hydrogen bonds, forming zigzag chains along [010].

1. Related literature

For the synthesis of 1-substituted 2,2,2-tri­fluoro­ethanols from ketones, see: Yamazaki et al. (1993[Yamazaki, T., Mizutani, K. & Kitazume, T. (1993). J. Org. Chem. 58, 4346-4359.]). For the enzymatic kinetic resolution of 1-substituted 2,2,2-tri­fluoro­ethanols, see: Omote et al. (2001[Omote, M., Ando, A., Sato, K. & Kumadaki, I. (2001). Tetrahedron, 57, 8085-8094.]); Xu et al. (2009[Xu, Q., Zhou, H., Geng, X. & Chen, P. (2009). Tetrahedron, 65, 2232-2238.]). For the utilization of cinchonidine as a chiral solvating reagent, see: Kolodyazhnyi et al. (2006[Kolodyazhnyi, O. I., Kolodyazhnaya, A. O. & Kukhar, V. P. (2006). Russ. J. Gen. Chem. 76, 1342-1343.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H6F3NOS

  • Mr = 233.21

  • Monoclinic, P 21

  • a = 9.2116 (9) Å

  • b = 5.5052 (4) Å

  • c = 10.2279 (8) Å

  • β = 107.411 (9)°

  • V = 494.91 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.05 × 0.05 mm

2.2. Data collection

  • Agilent Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.935, Tmax = 0.983

  • 4650 measured reflections

  • 2768 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.12

  • 2768 reflections

  • 160 parameters

  • 4 restraints

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1199 Friedel pairs

  • Absolute structure parameter: −0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.84 (4) 1.96 (4) 2.781 (2) 166 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2,2-Trifluoro-1-substituted ethanols attract attention as building blocks for introducing a chiral CF3-containing motif into biologically active molecules and mimicking carboxylic groups. Among them, 2,2,2-trifluoro-1-heteroaryl ethanols, promising synthetic targets, have been poorly explored because of a lack of suitable procedures for obtaining the enantipure compounds from racemates. We have recently proposed a convenient procedure for enzyme-catalyzed kinetic resolution of racemic 2,2,2-trifluoro-1-heteroaryl ethanols on a series of 14 compounds. Herein, we report the crystal structure of (S)-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol (I) (Fig. 1). The non-centrosymmetric space group clearly confirms the presence of one enantiomer in the crystal. The absolute configuration of the chiral center at atom C8 (S-configuration) is determined using the value of the Flack parameter (-0.03 (9)). The substituent on the bicyclic fragment is oriented in such way that the hydroxyl group has a conformation intermediate between sp- and -sc- relative to the N1—C7 endocyclic bond (the N1—C7—C8—O1 torsion angle is -30.8 (3) °). The trifluoromethyl group is oriented in such way that the C9—F2 bond is anti-periplanar to the C7—C8 bond (the N1—C7—C8—C9 and C7—C8—C9—F2 torsion angles are 88.5 (3) ° and 177.3 (2) °, respectively). In the crystal, molecules are linked via O—H···N hydrogen bonds (Fig. 2) forming zigzag chains along [0 1 0].

Related literature top

For the synthesis of 1-substituted 2,2,2-trifluoroethanols from ketones, see: Yamazaki et al. (1993). For the enzymatic kinetic resolution of 1-substituted 2,2,2-trifluoroethanols, see: Omote et al. (2001); Xu et al. (2009). For the utilization of cinchonidine as a chiral solvating reagent, see: Kolodyazhnyi et al. (2006).

Experimental top

Synthesis of rac-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol: To a solution of 1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanone (115.5 g, 0.5 mol) in methanol (500 ml) sodium borohydride (18.9 g, 0.5 mol) was added in small portions, maintaining the temperature of the reaction mixture below 303K. The mixture was stirred at room temperature until completion of the reaction (monitored by TLC). The solvent was removed under reduced pressure; to the crude was added 200 ml of water and the aqueous solution was extracted with dichloromethane (3 × 150 ml). The organic phase was dried over Na2SO4 and evaporated yield the desired product. Yield: 114.2 g, 98%; white solid; m.p.: 377 K; 1H NMR (400 MHz, CDCl3): δH = 5.19 (qd, 1H, 3JF,H = 7 Hz, 3JH,H = 7 Hz, CH), 6.98–7.08 (m, 2H, PhH), 7.48 (d, 1H, 3JH,H = 7 Hz, OH), 7.56 (d, 1H, 3JH,H = 7.6 Hz, PhH), 7.66 (d, 1H, 3JH,H = 8 Hz, PhH); 13C NMR (125 MHz, APT, CDCl3): δC = 69.4 (q, 2JF,C = 32 Hz, CH), 122.4 (PhH), 123.1 (PhH), 123.7 (q, 1JF,C = 282 Hz, CF3), 125.7 (PhH), 126.4 (PhH), 134.4 (C Ar), 152.7 (C Ar), 167.7 (C Ar); MS (APCI) m/z calculated for C9H7F3NOS 234.0 [M+H]+, found 234.0.

Kinetic resolution of rac-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethanol with vinyl acetate and Burkholderia cepacia lipase: The racemic alcohol (11.4 g, 0.05 mol) and vinyl acetate (14.3 ml, 0.15 mol) were dissolved in TBME (250 ml) following by addition of Burkholderia cepacia lipase (6 g). The obtained mixture was incubated at 323 K, the progress of the reaction was monitored by the cinchonidine method (Kolodyazhnyi et al., 2006). Then, the enzyme was filtered off, washed with TBME and the combined TBME fractions were evaporated. The unacylated (S)-alcohol was separated from the (R)-ester by column chromatography (SiO2, eluent: AcOEt/hexanes gradually changed from 1:20 to 1:1 (v/v)). The white needle-like crystals of the (S)-alcohol were formed after 1 week upon crystallization from chloroform.

Refinement top

The C—F bond lengths were constrained to 1.340 (1)Å. All hydrogen atoms were located in electron density difference maps and were refined with isotropic displacement parameters [C—H = 0.88 (4)–1.04 (3) Å and O—H = 0.84 (4)Å].

Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown by dashed lines. Only H atoms involved in H-bonds are shown.
(S)-1-(1,3-Benzothiazol-2-yl)-2,2,2-trifluoroethanol top
Crystal data top
C9H6F3NOSF(000) = 236
Mr = 233.21Dx = 1.565 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1591 reflections
a = 9.2116 (9) Åθ = 3.5–31.8°
b = 5.5052 (4) ŵ = 0.34 mm1
c = 10.2279 (8) ÅT = 293 K
β = 107.411 (9)°Needle, colourless
V = 494.91 (7) Å30.20 × 0.05 × 0.05 mm
Z = 2
Data collection top
Agilent Xcalibur3
diffractometer
2768 independent reflections
Radiation source: Enhance (Mo) X-ray Source2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.6°
ω scansh = 1012
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 77
Tmin = 0.935, Tmax = 0.983l = 1314
4650 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2768 reflectionsΔρmax = 0.21 e Å3
160 parametersΔρmin = 0.20 e Å3
4 restraintsAbsolute structure: Flack (1983), 1199 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C9H6F3NOSV = 494.91 (7) Å3
Mr = 233.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2116 (9) ŵ = 0.34 mm1
b = 5.5052 (4) ÅT = 293 K
c = 10.2279 (8) Å0.20 × 0.05 × 0.05 mm
β = 107.411 (9)°
Data collection top
Agilent Xcalibur3
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
2293 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.983Rint = 0.027
4650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042All H-atom parameters refined
wR(F2) = 0.108Δρmax = 0.21 e Å3
S = 1.12Δρmin = 0.20 e Å3
2768 reflectionsAbsolute structure: Flack (1983), 1199 Friedel pairs
160 parametersAbsolute structure parameter: 0.03 (9)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.84725 (19)0.5557 (5)0.85264 (17)0.0991 (7)
F20.89881 (19)0.5084 (6)1.06943 (16)0.1122 (8)
F30.7640 (2)0.2434 (2)0.9323 (2)0.0913 (6)
S10.51635 (7)0.81353 (17)0.68465 (5)0.05600 (17)
N10.4284 (2)0.4285 (3)0.78357 (16)0.0454 (4)
O10.5967 (2)0.5338 (3)1.05476 (15)0.0604 (4)
H1O0.582 (4)0.637 (7)1.110 (3)0.088 (11)*
C10.3304 (2)0.4556 (4)0.65070 (19)0.0434 (4)
C20.2101 (3)0.3050 (6)0.5878 (2)0.0579 (5)
H20.189 (3)0.176 (5)0.643 (2)0.046 (6)*
C30.1234 (3)0.3593 (6)0.4559 (3)0.0651 (7)
H30.050 (4)0.253 (7)0.424 (3)0.089 (11)*
C40.1525 (3)0.5594 (6)0.3878 (2)0.0634 (7)
H40.093 (3)0.582 (6)0.293 (3)0.067 (8)*
C50.2713 (3)0.7138 (5)0.4479 (2)0.0569 (6)
H50.299 (3)0.864 (7)0.408 (3)0.072 (9)*
C60.3606 (3)0.6586 (4)0.5814 (2)0.0463 (5)
C70.5280 (3)0.6011 (4)0.81243 (18)0.0440 (4)
C80.6483 (3)0.6243 (5)0.9503 (2)0.0511 (5)
H80.689 (2)0.799 (5)0.976 (2)0.044 (5)*
C90.7885 (2)0.4822 (3)0.95081 (14)0.0689 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0638 (10)0.153 (2)0.0853 (11)0.0105 (12)0.0298 (9)0.0049 (12)
F20.0743 (11)0.165 (2)0.0710 (10)0.0026 (14)0.0187 (9)0.0216 (13)
F30.0854 (12)0.0762 (13)0.1038 (13)0.0216 (10)0.0154 (10)0.0137 (9)
S10.0703 (3)0.0513 (3)0.0463 (3)0.0111 (3)0.0173 (2)0.0057 (2)
N10.0535 (10)0.0439 (9)0.0372 (8)0.0022 (8)0.0111 (7)0.0016 (6)
O10.0912 (13)0.0530 (10)0.0380 (7)0.0013 (9)0.0208 (7)0.0040 (7)
C10.0462 (10)0.0442 (10)0.0392 (9)0.0031 (8)0.0120 (7)0.0018 (8)
C20.0510 (11)0.0607 (13)0.0571 (12)0.0075 (13)0.0088 (9)0.0033 (13)
C30.0495 (13)0.078 (2)0.0591 (13)0.0007 (13)0.0028 (10)0.0055 (13)
C40.0573 (13)0.0851 (19)0.0413 (11)0.0148 (13)0.0047 (9)0.0017 (11)
C50.0678 (15)0.0633 (14)0.0416 (11)0.0140 (12)0.0195 (10)0.0101 (10)
C60.0545 (12)0.0476 (11)0.0392 (9)0.0058 (9)0.0177 (8)0.0028 (8)
C70.0532 (11)0.0427 (10)0.0363 (9)0.0023 (9)0.0137 (8)0.0020 (7)
C80.0655 (14)0.0476 (12)0.0369 (10)0.0071 (10)0.0102 (9)0.0073 (8)
C90.0584 (15)0.089 (2)0.0496 (13)0.0059 (15)0.0011 (10)0.0111 (13)
Geometric parameters (Å, º) top
F1—C91.3382 (10)C2—C31.379 (3)
F2—C91.3372 (10)C2—H20.96 (3)
F3—C91.3376 (10)C3—C41.372 (4)
S1—C61.731 (2)C3—H30.88 (4)
S1—C71.733 (2)C4—C51.377 (4)
N1—C71.292 (3)C4—H40.96 (3)
N1—C11.396 (2)C5—C61.400 (3)
O1—C81.385 (3)C5—H50.99 (4)
O1—H1O0.84 (4)C7—C81.516 (3)
C1—C21.379 (3)C8—C91.509 (3)
C1—C61.395 (3)C8—H81.04 (3)
C6—S1—C788.89 (10)C1—C6—C5121.4 (2)
C7—N1—C1110.59 (17)C1—C6—S1109.85 (15)
C8—O1—H1O116 (3)C5—C6—S1128.7 (2)
C2—C1—C6119.94 (19)N1—C7—C8123.09 (18)
C2—C1—N1125.8 (2)N1—C7—S1116.39 (14)
C6—C1—N1114.27 (18)C8—C7—S1120.51 (17)
C1—C2—C3118.3 (3)O1—C8—C9107.55 (18)
C1—C2—H2116.4 (13)O1—C8—C7111.31 (19)
C3—C2—H2125.0 (14)C9—C8—C7110.22 (16)
C4—C3—C2121.8 (3)O1—C8—H8108.9 (11)
C4—C3—H3126 (2)C9—C8—H8103.3 (13)
C2—C3—H3112 (2)C7—C8—H8115.0 (12)
C3—C4—C5121.3 (2)F2—C9—F3106.5 (2)
C3—C4—H4118.2 (19)F2—C9—F1106.24 (18)
C5—C4—H4120.3 (18)F3—C9—F1106.3 (2)
C4—C5—C6117.2 (2)F2—C9—C8111.38 (19)
C4—C5—H5127.0 (15)F3—C9—C8113.65 (17)
C6—C5—H5115.7 (16)F1—C9—C8112.25 (18)
C7—N1—C1—C2179.2 (2)C1—N1—C7—C8178.7 (2)
C7—N1—C1—C60.5 (3)C1—N1—C7—S10.2 (2)
C6—C1—C2—C30.8 (4)C6—S1—C7—N10.62 (18)
N1—C1—C2—C3179.4 (2)C6—S1—C7—C8178.34 (19)
C1—C2—C3—C41.1 (4)N1—C7—C8—O130.8 (3)
C2—C3—C4—C50.9 (4)S1—C7—C8—O1148.13 (17)
C3—C4—C5—C60.3 (4)N1—C7—C8—C988.5 (3)
C2—C1—C6—C50.2 (3)S1—C7—C8—C992.6 (2)
N1—C1—C6—C5179.1 (2)O1—C8—C9—F261.2 (2)
C2—C1—C6—S1179.74 (19)C7—C8—C9—F2177.3 (2)
N1—C1—C6—S10.9 (2)O1—C8—C9—F359.1 (2)
C4—C5—C6—C10.0 (4)C7—C8—C9—F362.4 (2)
C4—C5—C6—S1180.0 (2)O1—C8—C9—F1179.82 (18)
C7—S1—C6—C10.83 (16)C7—C8—C9—F158.3 (2)
C7—S1—C6—C5179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.84 (4)1.96 (4)2.781 (2)166 (4)
Symmetry code: (i) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.84 (4)1.96 (4)2.781 (2)166 (4)
Symmetry code: (i) x+1, y+1/2, z+2.
 

References

First citationAgilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKolodyazhnyi, O. I., Kolodyazhnaya, A. O. & Kukhar, V. P. (2006). Russ. J. Gen. Chem. 76, 1342–1343.  Web of Science CrossRef CAS Google Scholar
First citationOmote, M., Ando, A., Sato, K. & Kumadaki, I. (2001). Tetrahedron, 57, 8085–8094.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Q., Zhou, H., Geng, X. & Chen, P. (2009). Tetrahedron, 65, 2232–2238.  Web of Science CrossRef CAS Google Scholar
First citationYamazaki, T., Mizutani, K. & Kitazume, T. (1993). J. Org. Chem. 58, 4346–4359.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds