metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m310-m311

Crystal structure of (benzene­carbo­thio­amide-κS)chloridobis­(tri­phenyl­phosphane-κP)silver(I)

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th

Edited by A. J. Lough, University of Toronto, Canada (Received 30 June 2014; accepted 9 July 2014; online 1 August 2014)

In the mononuclear mixed-ligand title complex, [AgCl(C7H7NS)(C18H15P)2], the AgI ion is four coordinated by one S atom of a benzene­carbo­thio­amide ligand, two P atoms of two tri­phenyl­phosphane ligands and one chloride ion, displaying a distorted tetra­hedral coordination geometry. In the crystal, pairs of N—H⋯Cl hydrogen bonds form inversion dimers. An intra­molecular N—H⋯Cl hydrogen bond is also observed.

1. Related literature

For relevant examples of structures of AgI complexes, see: Aslanidis et al. (1997[Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Läge, M. (1997). Inorg. Chim. Acta, 254, 277-284.]); McFarlane et al. (1998[McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121-125.]); Cox et al. (2000[Cox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. (2000). Inorg. Chim. Acta, 310, 268-272.]); Dennehy et al. (2007[Dennehy, M., Quinzani, O. V. & Jennings, M. (2007). J. Mol. Struct. 841, 110-117.]); Nimthong et al. (2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]). For potential applications of related complexes, see: Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]); Nawaz et al. (2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [AgCl(C7H7NS)(C18H15P)2]

  • Mr = 805.05

  • Monoclinic, P 21 /n

  • a = 14.2405 (7) Å

  • b = 13.9271 (7) Å

  • c = 19.0774 (10) Å

  • β = 98.711 (1)°

  • V = 3740.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.30 × 0.16 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.923

  • 51284 measured reflections

  • 9308 independent reflections

  • 8544 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.13

  • 9308 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.43 3.1798 (17) 146
N1—H1B⋯Cl1 0.86 2.39 3.2434 (17) 173
Symmetry code: (i) -x+2, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Tri­phenyl­phosphine, (0.37 g, 0.14 mmol) was dissolved in 30 cm3 of aceto­nitrile at 343 K. AgCl (0.10 g, 0.70 mmol) was added and then the mixture was stirred for 3 hours. At that time, a white precipitate was deposited and then benzene­carbo­thio­amide (0.09 g, 0.70 mmol) was added. The new reaction mixture was continually heated under refluxed for 5 hours. The resulting clear solution was filtered and the filtrate was kept to evaporate at room temperature. X-ray quality crystals were obtained after two days and were filtered and dried in vacuo.

Refinement top

All H atoms were positioned geometrically and refined using a riding-model, approximation with C—H = 0.93 with Uiso(H) = 1.2 Ueq(C), N—H = 0.86 with Uiso(H) = 1.2 Ueq(N).

Results and discussion top

The coordination compounds of AgI complexes with phosphine and thione ligands have gained inter­est in recent years because of their participation in biological process as anti­bacterial agents (Isab et al., 2010; Nawaz et al., 2011). A large number of crystal structures of AgI complexes containing phosphine and thione as ligands have presented that these complexes are either mononuclear (McFarlane et al., 1998) or dinuclear (Cox et al., 2000) complexes with the silver(I) center exhibiting distorted tetra­hedral or trigonal coordination geometry (Aslanidis et al., 1997).

The molecular structure of the title mononuclear complex displays a distorted tetra­hedral coordination geometry (Fig. 1). The deviation from ideal tetra­hedral geometry can be described by the P2—Ag1—P1 angle which has value of 120.05 (2)° and this value is much larger than the perfect tetra­hedral value of 109.5°. This distortion may be due to the steric imposition induced by the two bulky tri­phenyl­phosphine ligands. This has also been observed in previous reports e.g. the P2—Cu1—P1 angle in [CuI(C7H8N2S)(C18H15P)2] is 118.63 (5)° (Nimthong et al., 2008). The Ag1—S1 bond distance in the title complex 2.5880 (5) Å lies in the range of other AgI complexes such as the Ag—S bond in [Ag(C7H4NS2O2)(C18H15P)3] of 2.5939 (10) Å (Dennehy et al., 2007). In the crystal, pairs of N—H···Cl hydrogen bonds form inversion dimers. An intra­molecular N—H···Cl hydrogen bond is also observed (Fig. 2).

Related literature top

For relevant examples of structures of AgI complexes, see: Aslanidis et al. (1997); McFarlane et al. (1998); Cox et al. (2000); Dennehy et al. (2007); Nimthong et al. (2008). For potential applications of related complexes, see: Isab et al. (2010); Nawaz et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure showing the intermolecular and intramolecular hydrogen bonds as dashed lines are drawn between the non-hydrogen atoms. The symmetry related molecule is generated by the operator (-x+2, -y, -z).
(Benzenecarbothioamide-κS)chloridobis(triphenylphosphane-κP)silver(I) top
Crystal data top
[AgCl(C7H7NS)(C18H15P)2]F(000) = 1648
Mr = 805.05Dx = 1.430 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.2405 (7) ÅCell parameters from 7876 reflections
b = 13.9271 (7) Åθ = 2.4–28.3°
c = 19.0774 (10) ŵ = 0.78 mm1
β = 98.711 (1)°T = 293 K
V = 3740.0 (3) Å3Block, colorless
Z = 40.30 × 0.16 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8544 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1918
Tmin = 0.861, Tmax = 0.923k = 1818
51284 measured reflectionsl = 2525
9308 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.9067P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
9308 reflectionsΔρmax = 0.72 e Å3
442 parametersΔρmin = 0.39 e Å3
Crystal data top
[AgCl(C7H7NS)(C18H15P)2]V = 3740.0 (3) Å3
Mr = 805.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.2405 (7) ŵ = 0.78 mm1
b = 13.9271 (7) ÅT = 293 K
c = 19.0774 (10) Å0.30 × 0.16 × 0.10 mm
β = 98.711 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9308 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
8544 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.923Rint = 0.031
51284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.13Δρmax = 0.72 e Å3
9308 reflectionsΔρmin = 0.39 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.96337 (2)0.11780 (2)0.18826 (2)0.01933 (5)
Cl11.07616 (3)0.00745 (4)0.12713 (2)0.02523 (10)
S10.79118 (3)0.07930 (4)0.13044 (2)0.02617 (11)
P11.02572 (3)0.27274 (3)0.15422 (2)0.01705 (9)
P20.98356 (3)0.07020 (3)0.31343 (2)0.01641 (9)
N10.86973 (12)0.00117 (13)0.02851 (9)0.0257 (4)
H1A0.86780.02420.01350.031*
H1B0.92210.00180.05760.031*
C11.02873 (12)0.29144 (13)0.05997 (9)0.0187 (3)
C21.05820 (14)0.37795 (14)0.03329 (10)0.0236 (4)
H21.07720.42850.06400.028*
C31.05912 (15)0.38854 (15)0.03897 (11)0.0268 (4)
H31.07910.44600.05660.032*
C41.03040 (16)0.31370 (16)0.08444 (11)0.0296 (4)
H41.03120.32100.13280.036*
C51.00051 (17)0.22818 (16)0.05892 (11)0.0324 (5)
H50.98100.17810.08990.039*
C60.99972 (15)0.21714 (14)0.01362 (10)0.0258 (4)
H60.97960.15950.03090.031*
C71.14768 (13)0.29086 (13)0.19631 (10)0.0200 (4)
C81.16664 (14)0.30735 (15)0.26924 (10)0.0263 (4)
H81.11660.31230.29520.032*
C91.25915 (16)0.31638 (17)0.30335 (12)0.0352 (5)
H91.27110.32890.35180.042*
C101.33373 (16)0.30669 (18)0.26532 (13)0.0374 (5)
H101.39600.31290.28810.045*
C111.31608 (15)0.28778 (18)0.19375 (13)0.0377 (5)
H111.36650.28000.16850.045*
C121.22346 (14)0.28022 (16)0.15898 (11)0.0286 (4)
H121.21210.26800.11050.034*
C130.96006 (13)0.37748 (13)0.17718 (10)0.0197 (4)
C140.86150 (15)0.37148 (15)0.16127 (13)0.0305 (5)
H140.83350.31570.14110.037*
C150.80496 (16)0.44786 (18)0.17519 (14)0.0390 (6)
H150.73930.44380.16320.047*
C160.84564 (17)0.53014 (17)0.20690 (12)0.0348 (5)
H160.80750.58110.21660.042*
C170.94290 (16)0.53631 (15)0.22403 (10)0.0286 (4)
H170.97020.59130.24600.034*
C181.00066 (14)0.46105 (14)0.20872 (10)0.0223 (4)
H181.06640.46640.21950.027*
C191.10059 (13)0.08806 (13)0.36558 (10)0.0193 (4)
C201.11456 (15)0.12565 (17)0.43381 (11)0.0319 (5)
H201.06250.14390.45480.038*
C211.20579 (16)0.13612 (19)0.47091 (13)0.0386 (5)
H211.21440.16110.51670.046*
C221.28319 (15)0.10983 (17)0.44038 (13)0.0358 (5)
H221.34420.11640.46540.043*
C231.26999 (16)0.07346 (19)0.37215 (14)0.0385 (5)
H231.32240.05630.35110.046*
C241.17911 (14)0.06228 (16)0.33477 (12)0.0297 (4)
H241.17090.03750.28900.036*
C250.90286 (13)0.13427 (14)0.36321 (10)0.0201 (4)
C260.86802 (14)0.09695 (16)0.42206 (11)0.0272 (4)
H260.88560.03550.43800.033*
C270.80725 (15)0.15072 (19)0.45705 (12)0.0362 (5)
H270.78380.12490.49590.043*
C280.78167 (16)0.2422 (2)0.43432 (13)0.0413 (6)
H280.74130.27810.45800.050*
C290.81590 (16)0.28085 (17)0.37632 (14)0.0381 (5)
H290.79900.34290.36130.046*
C300.87564 (14)0.22677 (15)0.34051 (11)0.0280 (4)
H300.89770.25250.30110.034*
C310.96144 (13)0.05724 (13)0.32671 (9)0.0185 (3)
C320.91259 (14)0.10887 (14)0.26999 (11)0.0246 (4)
H320.89380.07850.22670.030*
C330.89178 (15)0.20533 (15)0.27774 (12)0.0297 (4)
H330.85870.23910.23980.036*
C340.92006 (16)0.25143 (15)0.34174 (12)0.0295 (4)
H340.90520.31580.34710.035*
C350.97056 (16)0.20123 (15)0.39764 (11)0.0288 (4)
H350.99070.23230.44040.035*
C360.99138 (14)0.10483 (14)0.39031 (10)0.0243 (4)
H361.02560.07170.42820.029*
C370.79299 (13)0.03483 (13)0.04814 (9)0.0200 (4)
C380.70443 (14)0.03396 (14)0.00449 (9)0.0219 (4)
C390.69078 (16)0.03464 (16)0.05811 (11)0.0307 (5)
H390.73790.07970.06200.037*
C400.60665 (17)0.03594 (18)0.10586 (12)0.0379 (5)
H400.59770.08200.14150.045*
C410.53653 (16)0.03057 (19)0.10061 (12)0.0386 (5)
H410.48000.02890.13230.046*
C420.55038 (18)0.0996 (2)0.04827 (13)0.0444 (6)
H420.50350.14510.04500.053*
C430.63401 (16)0.10130 (18)0.00047 (12)0.0348 (5)
H430.64290.14820.03460.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02407 (8)0.01923 (7)0.01454 (7)0.00135 (5)0.00242 (5)0.00012 (5)
Cl10.0264 (2)0.0283 (2)0.0204 (2)0.00856 (19)0.00159 (17)0.00369 (18)
S10.0203 (2)0.0411 (3)0.0165 (2)0.0002 (2)0.00093 (17)0.0062 (2)
P10.0174 (2)0.0171 (2)0.0162 (2)0.00025 (17)0.00140 (16)0.00061 (16)
P20.0171 (2)0.0186 (2)0.0133 (2)0.00141 (17)0.00131 (16)0.00025 (16)
N10.0225 (8)0.0345 (9)0.0191 (8)0.0021 (7)0.0006 (6)0.0072 (7)
C10.0167 (8)0.0210 (9)0.0179 (8)0.0013 (7)0.0012 (6)0.0017 (7)
C20.0261 (10)0.0208 (9)0.0237 (9)0.0039 (7)0.0035 (7)0.0005 (7)
C30.0301 (10)0.0256 (10)0.0261 (10)0.0010 (8)0.0083 (8)0.0060 (8)
C40.0378 (12)0.0331 (11)0.0185 (9)0.0057 (9)0.0058 (8)0.0053 (8)
C50.0494 (14)0.0257 (10)0.0201 (9)0.0008 (9)0.0013 (9)0.0028 (8)
C60.0353 (11)0.0210 (9)0.0199 (9)0.0015 (8)0.0000 (8)0.0034 (7)
C70.0192 (8)0.0178 (8)0.0220 (9)0.0003 (7)0.0000 (7)0.0005 (7)
C80.0250 (10)0.0304 (10)0.0226 (9)0.0018 (8)0.0007 (8)0.0007 (8)
C90.0344 (12)0.0376 (12)0.0295 (11)0.0001 (10)0.0083 (9)0.0021 (9)
C100.0222 (10)0.0395 (13)0.0463 (13)0.0031 (9)0.0088 (9)0.0019 (10)
C110.0198 (10)0.0463 (14)0.0478 (14)0.0014 (9)0.0072 (9)0.0036 (11)
C120.0241 (10)0.0350 (11)0.0265 (10)0.0017 (8)0.0036 (8)0.0010 (8)
C130.0207 (9)0.0209 (9)0.0183 (8)0.0029 (7)0.0052 (7)0.0039 (7)
C140.0216 (10)0.0261 (10)0.0439 (13)0.0003 (8)0.0050 (9)0.0054 (9)
C150.0228 (10)0.0388 (13)0.0580 (15)0.0107 (9)0.0139 (10)0.0135 (11)
C160.0421 (13)0.0315 (11)0.0346 (11)0.0170 (10)0.0180 (10)0.0103 (9)
C170.0449 (12)0.0240 (10)0.0170 (9)0.0079 (9)0.0050 (8)0.0014 (7)
C180.0265 (9)0.0214 (9)0.0187 (8)0.0022 (7)0.0019 (7)0.0017 (7)
C190.0175 (8)0.0193 (8)0.0200 (8)0.0007 (7)0.0007 (7)0.0022 (7)
C200.0225 (10)0.0473 (13)0.0255 (10)0.0013 (9)0.0019 (8)0.0068 (9)
C210.0291 (11)0.0536 (15)0.0298 (11)0.0051 (10)0.0064 (9)0.0102 (10)
C220.0199 (10)0.0411 (13)0.0429 (13)0.0012 (9)0.0070 (9)0.0014 (10)
C230.0201 (10)0.0462 (14)0.0494 (14)0.0062 (9)0.0065 (9)0.0019 (11)
C240.0239 (10)0.0342 (11)0.0308 (11)0.0024 (8)0.0037 (8)0.0061 (9)
C250.0151 (8)0.0247 (9)0.0196 (8)0.0004 (7)0.0001 (7)0.0053 (7)
C260.0212 (9)0.0377 (12)0.0229 (9)0.0005 (8)0.0041 (7)0.0030 (8)
C270.0250 (11)0.0556 (15)0.0297 (11)0.0022 (10)0.0096 (9)0.0119 (10)
C280.0259 (11)0.0541 (16)0.0441 (14)0.0043 (10)0.0062 (10)0.0252 (12)
C290.0311 (11)0.0312 (12)0.0499 (14)0.0070 (9)0.0004 (10)0.0121 (10)
C300.0256 (10)0.0264 (10)0.0307 (10)0.0014 (8)0.0001 (8)0.0041 (8)
C310.0173 (8)0.0197 (9)0.0194 (8)0.0008 (7)0.0060 (7)0.0005 (7)
C320.0263 (10)0.0244 (10)0.0220 (9)0.0008 (8)0.0003 (8)0.0021 (7)
C330.0325 (11)0.0233 (10)0.0327 (11)0.0047 (8)0.0029 (9)0.0080 (8)
C340.0345 (11)0.0193 (9)0.0384 (11)0.0029 (8)0.0170 (9)0.0016 (8)
C350.0393 (12)0.0250 (10)0.0245 (10)0.0002 (9)0.0123 (9)0.0053 (8)
C360.0292 (10)0.0254 (10)0.0186 (9)0.0019 (8)0.0049 (8)0.0005 (7)
C370.0227 (9)0.0198 (9)0.0172 (8)0.0031 (7)0.0017 (7)0.0003 (7)
C380.0231 (9)0.0255 (9)0.0162 (8)0.0035 (7)0.0003 (7)0.0003 (7)
C390.0307 (11)0.0296 (11)0.0292 (10)0.0013 (9)0.0034 (8)0.0070 (9)
C400.0370 (12)0.0416 (13)0.0309 (11)0.0022 (10)0.0080 (9)0.0118 (10)
C410.0292 (11)0.0586 (16)0.0242 (10)0.0023 (11)0.0082 (9)0.0049 (10)
C420.0349 (13)0.0619 (17)0.0326 (12)0.0199 (12)0.0072 (10)0.0099 (11)
C430.0336 (12)0.0441 (13)0.0239 (10)0.0105 (10)0.0042 (9)0.0115 (9)
Geometric parameters (Å, º) top
Ag1—P22.4529 (5)C18—H180.9300
Ag1—P12.4578 (5)C19—C241.387 (3)
Ag1—S12.5880 (5)C19—C201.389 (3)
Ag1—Cl12.6208 (5)C20—C211.390 (3)
S1—C371.6918 (19)C20—H200.9300
P1—C71.8173 (19)C21—C221.372 (3)
P1—C131.8216 (19)C21—H210.9300
P1—C11.8238 (18)C22—C231.383 (3)
P2—C191.8240 (18)C22—H220.9300
P2—C311.8269 (19)C23—C241.389 (3)
P2—C251.8300 (19)C23—H230.9300
N1—C371.308 (2)C24—H240.9300
N1—H1A0.8600C25—C261.395 (3)
N1—H1B0.8600C25—C301.395 (3)
C1—C61.383 (3)C26—C271.389 (3)
C1—C21.397 (3)C26—H260.9300
C2—C31.388 (3)C27—C281.377 (4)
C2—H20.9300C27—H270.9300
C3—C41.378 (3)C28—C291.384 (4)
C3—H30.9300C28—H280.9300
C4—C51.378 (3)C29—C301.391 (3)
C4—H40.9300C29—H290.9300
C5—C61.394 (3)C30—H300.9300
C5—H50.9300C31—C361.392 (3)
C6—H60.9300C31—C321.394 (3)
C7—C121.388 (3)C32—C331.388 (3)
C7—C81.396 (3)C32—H320.9300
C8—C91.384 (3)C33—C341.384 (3)
C8—H80.9300C33—H330.9300
C9—C101.381 (3)C34—C351.382 (3)
C9—H90.9300C34—H340.9300
C10—C111.376 (3)C35—C361.386 (3)
C10—H100.9300C35—H350.9300
C11—C121.388 (3)C36—H360.9300
C11—H110.9300C37—C381.488 (2)
C12—H120.9300C38—C431.384 (3)
C13—C141.393 (3)C38—C391.392 (3)
C13—C181.395 (3)C39—C401.391 (3)
C14—C151.384 (3)C39—H390.9300
C14—H140.9300C40—C411.377 (3)
C15—C161.381 (4)C40—H400.9300
C15—H150.9300C41—C421.378 (3)
C16—C171.377 (3)C41—H410.9300
C16—H160.9300C42—C431.386 (3)
C17—C181.390 (3)C42—H420.9300
C17—H170.9300C43—H430.9300
P2—Ag1—P1120.053 (16)C24—C19—C20118.98 (18)
P2—Ag1—S1108.823 (16)C24—C19—P2117.53 (15)
P1—Ag1—S1115.223 (17)C20—C19—P2123.49 (15)
P2—Ag1—Cl1106.579 (16)C19—C20—C21120.5 (2)
P1—Ag1—Cl197.298 (16)C19—C20—H20119.8
S1—Ag1—Cl1107.087 (16)C21—C20—H20119.8
C37—S1—Ag1108.95 (7)C22—C21—C20120.3 (2)
C7—P1—C13105.87 (9)C22—C21—H21119.8
C7—P1—C1104.61 (8)C20—C21—H21119.8
C13—P1—C1102.26 (8)C21—C22—C23119.6 (2)
C7—P1—Ag1111.37 (6)C21—C22—H22120.2
C13—P1—Ag1114.86 (6)C23—C22—H22120.2
C1—P1—Ag1116.70 (6)C22—C23—C24120.5 (2)
C19—P2—C31102.67 (8)C22—C23—H23119.7
C19—P2—C25104.13 (8)C24—C23—H23119.7
C31—P2—C25105.47 (9)C19—C24—C23120.1 (2)
C19—P2—Ag1117.18 (6)C19—C24—H24119.9
C31—P2—Ag1113.60 (6)C23—C24—H24119.9
C25—P2—Ag1112.53 (6)C26—C25—C30118.54 (18)
C37—N1—H1A120.0C26—C25—P2124.32 (15)
C37—N1—H1B120.0C30—C25—P2117.13 (15)
H1A—N1—H1B120.0C27—C26—C25120.6 (2)
C6—C1—C2119.31 (17)C27—C26—H26119.7
C6—C1—P1118.31 (14)C25—C26—H26119.7
C2—C1—P1122.38 (14)C28—C27—C26120.1 (2)
C3—C2—C1120.12 (18)C28—C27—H27119.9
C3—C2—H2119.9C26—C27—H27119.9
C1—C2—H2119.9C27—C28—C29120.2 (2)
C4—C3—C2119.88 (18)C27—C28—H28119.9
C4—C3—H3120.1C29—C28—H28119.9
C2—C3—H3120.1C28—C29—C30119.9 (2)
C3—C4—C5120.62 (19)C28—C29—H29120.1
C3—C4—H4119.7C30—C29—H29120.1
C5—C4—H4119.7C29—C30—C25120.6 (2)
C4—C5—C6119.69 (19)C29—C30—H30119.7
C4—C5—H5120.2C25—C30—H30119.7
C6—C5—H5120.2C36—C31—C32118.82 (17)
C1—C6—C5120.38 (19)C36—C31—P2123.17 (14)
C1—C6—H6119.8C32—C31—P2118.01 (14)
C5—C6—H6119.8C33—C32—C31120.38 (19)
C12—C7—C8118.76 (18)C33—C32—H32119.8
C12—C7—P1121.58 (15)C31—C32—H32119.8
C8—C7—P1119.41 (15)C34—C33—C32120.30 (19)
C9—C8—C7120.7 (2)C34—C33—H33119.9
C9—C8—H8119.7C32—C33—H33119.9
C7—C8—H8119.7C35—C34—C33119.59 (19)
C10—C9—C8119.8 (2)C35—C34—H34120.2
C10—C9—H9120.1C33—C34—H34120.2
C8—C9—H9120.1C34—C35—C36120.40 (19)
C11—C10—C9120.0 (2)C34—C35—H35119.8
C11—C10—H10120.0C36—C35—H35119.8
C9—C10—H10120.0C35—C36—C31120.48 (19)
C10—C11—C12120.4 (2)C35—C36—H36119.8
C10—C11—H11119.8C31—C36—H36119.8
C12—C11—H11119.8N1—C37—C38117.60 (16)
C11—C12—C7120.2 (2)N1—C37—S1122.48 (14)
C11—C12—H12119.9C38—C37—S1119.91 (14)
C7—C12—H12119.9C43—C38—C39118.97 (18)
C14—C13—C18118.83 (18)C43—C38—C37120.29 (17)
C14—C13—P1115.88 (15)C39—C38—C37120.74 (18)
C18—C13—P1125.29 (14)C40—C39—C38120.1 (2)
C15—C14—C13120.6 (2)C40—C39—H39120.0
C15—C14—H14119.7C38—C39—H39120.0
C13—C14—H14119.7C41—C40—C39120.4 (2)
C16—C15—C14120.3 (2)C41—C40—H40119.8
C16—C15—H15119.9C39—C40—H40119.8
C14—C15—H15119.9C40—C41—C42119.7 (2)
C17—C16—C15119.7 (2)C40—C41—H41120.1
C17—C16—H16120.1C42—C41—H41120.1
C15—C16—H16120.1C41—C42—C43120.2 (2)
C16—C17—C18120.6 (2)C41—C42—H42119.9
C16—C17—H17119.7C43—C42—H42119.9
C18—C17—H17119.7C38—C43—C42120.6 (2)
C17—C18—C13119.99 (19)C38—C43—H43119.7
C17—C18—H18120.0C42—C43—H43119.7
C13—C18—H18120.0
C7—P1—C1—C6121.08 (16)P2—C19—C20—C21179.13 (18)
C13—P1—C1—C6128.69 (16)C19—C20—C21—C220.3 (4)
Ag1—P1—C1—C62.47 (17)C20—C21—C22—C230.5 (4)
C7—P1—C1—C259.59 (17)C21—C22—C23—C240.8 (4)
C13—P1—C1—C250.64 (17)C20—C19—C24—C230.5 (3)
Ag1—P1—C1—C2176.86 (13)P2—C19—C24—C23179.44 (18)
C6—C1—C2—C30.6 (3)C22—C23—C24—C190.3 (4)
P1—C1—C2—C3179.96 (15)C19—P2—C25—C2681.47 (18)
C1—C2—C3—C40.4 (3)C31—P2—C25—C2626.25 (18)
C2—C3—C4—C50.1 (3)Ag1—P2—C25—C26150.62 (15)
C3—C4—C5—C60.3 (3)C19—P2—C25—C3097.99 (15)
C2—C1—C6—C50.5 (3)C31—P2—C25—C30154.29 (14)
P1—C1—C6—C5179.81 (16)Ag1—P2—C25—C3029.92 (16)
C4—C5—C6—C10.0 (3)C30—C25—C26—C270.2 (3)
C13—P1—C7—C12130.56 (17)P2—C25—C26—C27179.70 (16)
C1—P1—C7—C1222.97 (19)C25—C26—C27—C280.8 (3)
Ag1—P1—C7—C12103.94 (16)C26—C27—C28—C290.4 (3)
C13—P1—C7—C855.30 (17)C27—C28—C29—C300.6 (3)
C1—P1—C7—C8162.89 (16)C28—C29—C30—C251.1 (3)
Ag1—P1—C7—C870.20 (16)C26—C25—C30—C290.7 (3)
C12—C7—C8—C92.3 (3)P2—C25—C30—C29178.80 (16)
P1—C7—C8—C9176.59 (17)C19—P2—C31—C3635.53 (18)
C7—C8—C9—C101.6 (3)C25—P2—C31—C3673.24 (17)
C8—C9—C10—C110.2 (4)Ag1—P2—C31—C36163.06 (14)
C9—C10—C11—C121.3 (4)C19—P2—C31—C32144.12 (15)
C10—C11—C12—C70.6 (4)C25—P2—C31—C32107.10 (16)
C8—C7—C12—C111.2 (3)Ag1—P2—C31—C3216.59 (17)
P1—C7—C12—C11175.38 (17)C36—C31—C32—C332.0 (3)
C7—P1—C13—C14168.93 (15)P2—C31—C32—C33178.37 (16)
C1—P1—C13—C1481.80 (16)C31—C32—C33—C340.5 (3)
Ag1—P1—C13—C1445.60 (17)C32—C33—C34—C351.1 (3)
C7—P1—C13—C1811.10 (18)C33—C34—C35—C361.2 (3)
C1—P1—C13—C1898.18 (17)C34—C35—C36—C310.2 (3)
Ag1—P1—C13—C18134.42 (15)C32—C31—C36—C351.8 (3)
C18—C13—C14—C151.3 (3)P2—C31—C36—C35178.54 (15)
P1—C13—C14—C15178.66 (18)Ag1—S1—C37—N119.52 (18)
C13—C14—C15—C161.8 (4)Ag1—S1—C37—C38161.76 (13)
C14—C15—C16—C170.6 (3)N1—C37—C38—C43153.7 (2)
C15—C16—C17—C181.0 (3)S1—C37—C38—C4327.5 (3)
C16—C17—C18—C131.5 (3)N1—C37—C38—C3926.7 (3)
C14—C13—C18—C170.3 (3)S1—C37—C38—C39152.13 (17)
P1—C13—C18—C17179.73 (14)C43—C38—C39—C401.1 (3)
C31—P2—C19—C2481.55 (17)C37—C38—C39—C40178.5 (2)
C25—P2—C19—C24168.66 (16)C38—C39—C40—C410.2 (4)
Ag1—P2—C19—C2443.67 (18)C39—C40—C41—C420.8 (4)
C31—P2—C19—C2098.36 (18)C40—C41—C42—C430.9 (4)
C25—P2—C19—C2011.4 (2)C39—C38—C43—C421.1 (4)
Ag1—P2—C19—C20136.42 (16)C37—C38—C43—C42178.5 (2)
C24—C19—C20—C210.8 (3)C41—C42—C43—C380.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.433.1798 (17)146
N1—H1B···Cl10.862.393.2434 (17)173
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.433.1798 (17)145.7
N1—H1B···Cl10.862.393.2434 (17)172.7
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate school, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Arunpatcha Nimthong for valuable suggestions.

References

First citationAslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Läge, M. (1997). Inorg. Chim. Acta, 254, 277–284.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. (2000). Inorg. Chim. Acta, 310, 268–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationDennehy, M., Quinzani, O. V. & Jennings, M. (2007). J. Mol. Struct. 841, 110–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m310-m311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds