organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o962-o963

Crystal structure of 1-methyl-2-[(E)-2-(4-methyl­phen­yl)ethen­yl]-4-nitro-1H-imidazole

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 17 July 2014; accepted 25 July 2014; online 1 August 2014)

In the title mol­ecule, C13H13N3O2, the planes of the benzene and imidazole rings form a dihedral angle of 7.72 (5)°. In the crystal, mol­ecules are linked by weak C—H⋯N and C—H⋯O hydrogen bonds, forming layers parallel to (100). A weak C—H⋯π inter­action connects these layers into a three-dimensional network. A ππ stacking inter­action, with a centroid–centroid distance of 3.5373 (9) Å, is also observed.

1. Related literature

For the synthesis and applications of imidazole derivatives, see: Mamedov et al. (2011[Mamedov, V. A., Zhukova, N. A., Beschastnova, T. N., Gubaidullin, A. T., Rakov, D. V. & Rizvanov, I. Kh. (2011). Tetrahedron Lett. 52, 4280-4284.]); De Luca (2006[De Luca, L. (2006). Curr. Med. Chem. 13, 1-23.]); Teimouri & Chermahini (2011[Teimouri, A. & Chermahini, A. N. (2011). J. Mol. Catal. A Chem. 346, 39-45.]); Achar et al. (2010[Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048-2054.]); Özkay et al. (2010[Özkay, Y., Iskar, I., Incesu, Z. & Akalin, G. E. (2010). Eur. J. Med. Chem. 45, 1-9.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]); Bhatia & Shanbhag (1984[Bhatia, S. C. & Shanbhag, V. D. (1984). J. Chromatogr. 3, 305, 325-334.]); Hoffer & Grunberg (1974[Hoffer, M. & Grunberg, E. (1974). J. Med. Chem. 17, 1019-1020.]). For the biological activity of nitro­imidazole derivatives, see: Trivedi et al. (2011[Trivedi, M. N., Gabhe, S. Y., Vachhani, U. D., Brijesh Patel, R. & Shah, C. P. (2011). J. Chem. Pharm. Res. 3, 313-319.]); Leitsch et al. (2011[Leitsch, D., Burgess, A. G., Dunn, L. A., Krauer, K. G., Tan, K., Duchêne, M., Upcroft, P., Eckmann, M. & Upcroft, J. A. (2011). J. Antimicrob. Chemother. 66, 1756-1765.]); Luo et al. (2010[Luo, Y., Li, H. K., Zhou, Y., Li, Z. L., Yan, T. & Zhu, H. L. (2010). Chem. Med. Chem. 5, 1110-1116.]); Saadeh et al. (2009[Saadeh, H. A., Mosleh, I. M. & El-Abadelah, M. M. (2009). Molecules, 14, 2758-2767.]); Thompson et al. (2009[Thompson, A., Blaser, A., Anderson, R., Shinde, S., Franzblau, S., Ma, Z., Denny, W. & Palmer, B. (2009). J. Med. Chem. 52, 637-645.]); Carvalho et al. (2006[Carvalho, A. S., Gibaldi, D., Pinto, A. C., Bozza, M. & Boechat, N. (2006). Lett. Drug Des. Discov. 3, 98-101.]); Alliouche et al. (2014[Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174-179.]); Hunkeler et al. (1981[Hunkeler, W., Mohler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. & Haefely, W. (1981). Nature, 290, 514-516.]); Tanigawara et al. (1999[Tanigawara, Y., Aoyama, N., Kita, T., Shirakawa, K., Komada, F., Kasuga, M. & Okumura, K. (1999). Clin. Pharmacol. Ther. 66, 528-534.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H13N3O2

  • Mr = 243.26

  • Monoclinic, P 21 /c

  • a = 7.1774 (8) Å

  • b = 15.7931 (16) Å

  • c = 10.7901 (11) Å

  • β = 101.798 (6)°

  • V = 1197.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.16 × 0.06 × 0.05 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.891, Tmax = 1.000

  • 9856 measured reflections

  • 2113 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.05

  • 2113 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.93 2.49 3.3702 (17) 159
C4—H4C⋯O1Bi 0.96 2.54 3.2676 (17) 133
C13—H13B⋯O1Aii 0.96 2.59 3.5347 (19) 168
C4—H4BCgiii 0.96 2.61 3.4336 (16) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The imidazole nucleus is an important pharmacophore found in a large number of natural products and synthetic compounds with a wide range of applications which make imidazole derivatives a subject of extensive investigations (Mamedov, et al., 2011; De Luca, 2006; Tanigawara, et al., 1999; Hunkeler, et al., 1981). For example, many synthetic imidazole derivatives are present in a number of bioactive compounds such as fungicides, herbicides, bactericides, anti-inflammators, analgesics and anticancers (Teimouri, et al., 2011; Achar, et al., 2010; Özkay, et al., 2010; Shingalapur, et al., 2009). Nitroimidazoles are a particular class of imidazoles principally composed of bioactive substances where their spectrum of action is closely associated with the position of the nitro group on the imidazole ring. Due to their significant biological activity, 5-nitroimidazoles are widely used in medicine as bactericide and parasiticide agents, some of them possess an original activity spectrum especially towards protozoa and strict anaerobic bacteria (Trivedi, et al., 2011; Bhatia, et al., 1984; Hoffer et al., 1974), and others exhibit cytotoxic and radiosensitization activities in vitro and in vivo (Leitsch, et al., 2011; Luo, et al., 2010). However, only few biological properties of 4-nitroimidazoles have been reported in the literature (Saadeh, et al., 2009; Thompson, et al., 2009; Carvalho, et al., 2006). The transposition of a nitro group in 5-nitroimidazoles is a known reaction and constitutes an efficient synthetic procedure of 4-nitroisomers. However, only few examples of this reaction are described using methyl iodide as catalyst (Alliouche, et al. 2014). We report in this paper, the synthesis and structure determination of (E)-1-methyl-2-[(4-methylphenyl)-1-ethenyl]-5-nitroimidazole (I). The later was easily prepared from its 5-nitro isomer via an intramolecular transposition of the nitro group. The reaction was carried out in nitrobenzene at 433K using catalytic amount of methyl iodide.

The molecular structure of (I) is shown in Fig. 1. The benzene and imidazole ring form a dihedral angle of 7.72 (5)°. The crystal packing can be described as double zig-zag layers parallel to (100) (Fig. 2) which are stabilized by weak C—H···N and C—H···O hydrogen bonds. A weak C—H···π interaction links the layers forming a three-dimensional network (Fig. 2 and Fig. 3). The crystal structure features one ππ stacking interaction: Cg1—Cg2 (-x, -y, 1-z) = 3.5373 (9) Å Where, Cg1 is the centroid of the imidazole ring (C1/C2/N3/C3/N2) and Cg2 is is the centroid of the phenyl ring (C7/C8/C9/C10/C11/C12).

Related literature top

For the synthesis and applications of imidazole derivatives, see: Mamedov et al. (2011); De Luca (2006); Teimouri & Chermahini (2011); Achar et al. (2010); Özkay et al. (2010); Shingalapur et al. (2009); Bhatia & Shanbhag (1984); Hoffer & Grunberg (1974). For the biological activity of nitroimidazole derivatives, see: Trivedi et al. (2011); Leitsch et al. (2011); Luo et al. (2010); Saadeh et al. (2009); Thompson et al. (2009); Carvalho et al. (2006); Alliouche et al. (2014); Hunkeler et al. (1981); Tanigawara et al. (1999).

Experimental top

The title compound (I) was obtained as yellow solid in 94% yield by heating the corresponding 5-nitroisomer at 433K in nitrobenzene in presence of methyl iodide as catalyst, during 24 h. Suitable crystals were obtained by slow evaporation of a solution of the title compound in water/methanol solution at room temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding on their parent atom (with C—H = 0.93 and 0.96 Å and Uiso(H) = 1.5 or 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis showing weak C—H···O hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I) viewed along the a axis showing weak C—H···O and C—H···N hydrogen bonds as dashed lines.
1-Methyl-2-[(E)-2-(4-methylphenyl)ethenyl]-4-nitro-1H-imidazole top
Crystal data top
C13H13N3O2F(000) = 512
Mr = 243.26Dx = 1.35 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6402 reflections
a = 7.1774 (8) Åθ = 2.3–25.1°
b = 15.7931 (16) ŵ = 0.09 mm1
c = 10.7901 (11) ÅT = 150 K
β = 101.798 (6)°Needle, colorless
V = 1197.3 (2) Å30.16 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
CCD rotation images, thin slices scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 88
Tmin = 0.891, Tmax = 1.000k = 1818
9856 measured reflectionsl = 1212
2113 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.712P]
where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max = 0.005
165 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H13N3O2V = 1197.3 (2) Å3
Mr = 243.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1774 (8) ŵ = 0.09 mm1
b = 15.7931 (16) ÅT = 150 K
c = 10.7901 (11) Å0.16 × 0.06 × 0.05 mm
β = 101.798 (6)°
Data collection top
Bruker APEXII
diffractometer
2113 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1958 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 1.000Rint = 0.025
9856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
2113 reflectionsΔρmin = 0.31 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.41984 (15)0.20989 (7)0.58571 (10)0.0142 (3)
O1B0.58852 (16)0.36479 (6)0.59448 (9)0.0234 (3)
O1A0.62422 (14)0.36871 (6)0.79969 (9)0.0214 (3)
N30.37372 (15)0.13617 (7)0.75347 (10)0.0136 (3)
N10.56745 (16)0.33418 (7)0.69608 (10)0.0154 (3)
C120.16578 (19)0.08459 (9)0.37141 (12)0.0173 (3)
H120.17140.09470.4570.021*
C10.47447 (18)0.25439 (8)0.69479 (12)0.0138 (3)
C70.20697 (18)0.00361 (8)0.33138 (12)0.0148 (3)
C30.35902 (18)0.13706 (8)0.62364 (12)0.0136 (3)
C90.15285 (19)0.05791 (9)0.11606 (13)0.0177 (3)
H90.15120.04850.03080.021*
C50.29083 (19)0.06490 (8)0.54450 (12)0.0157 (3)
H50.2650.01480.58310.019*
C20.44778 (18)0.21119 (8)0.79988 (12)0.0141 (3)
H20.47440.22930.88370.017*
C110.11685 (19)0.14954 (9)0.28511 (13)0.0187 (3)
H110.08790.20250.31380.022*
C60.26340 (18)0.06724 (8)0.41831 (12)0.0157 (3)
H60.28210.11920.38210.019*
C100.10965 (19)0.13770 (9)0.15583 (13)0.0182 (3)
C40.3300 (2)0.06497 (8)0.82950 (12)0.0169 (3)
H4A0.42490.02170.83240.025*
H4B0.20730.04240.79210.025*
H4C0.32930.08410.91390.025*
C130.0545 (2)0.20885 (10)0.06267 (14)0.0255 (3)
H13A0.07820.22150.0550.038*
H13B0.12870.25820.0920.038*
H13C0.07790.19230.01840.038*
C80.19843 (19)0.00802 (9)0.20157 (12)0.0168 (3)
H80.2240.06130.17220.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0171 (6)0.0135 (6)0.0119 (5)0.0024 (4)0.0024 (4)0.0006 (4)
O1B0.0390 (6)0.0180 (5)0.0150 (5)0.0046 (4)0.0093 (4)0.0023 (4)
O1A0.0312 (6)0.0174 (5)0.0144 (5)0.0033 (4)0.0019 (4)0.0040 (4)
N30.0162 (6)0.0129 (6)0.0118 (5)0.0014 (4)0.0033 (4)0.0011 (4)
N10.0199 (6)0.0129 (6)0.0136 (6)0.0026 (4)0.0037 (4)0.0001 (4)
C120.0190 (7)0.0184 (7)0.0135 (6)0.0014 (5)0.0016 (5)0.0007 (5)
C10.0164 (6)0.0116 (6)0.0135 (6)0.0027 (5)0.0034 (5)0.0002 (5)
C70.0122 (6)0.0175 (7)0.0147 (6)0.0012 (5)0.0024 (5)0.0013 (5)
C30.0137 (6)0.0148 (7)0.0123 (6)0.0031 (5)0.0028 (5)0.0012 (5)
C90.0153 (7)0.0249 (7)0.0130 (6)0.0016 (5)0.0030 (5)0.0021 (5)
C50.0172 (7)0.0139 (6)0.0163 (7)0.0003 (5)0.0040 (5)0.0001 (5)
C20.0164 (6)0.0134 (6)0.0126 (6)0.0028 (5)0.0028 (5)0.0015 (5)
C110.0182 (7)0.0150 (7)0.0216 (7)0.0007 (5)0.0014 (5)0.0013 (5)
C60.0158 (7)0.0142 (7)0.0176 (7)0.0002 (5)0.0043 (5)0.0010 (5)
C100.0126 (6)0.0207 (7)0.0202 (7)0.0029 (5)0.0008 (5)0.0055 (6)
C40.0211 (7)0.0165 (7)0.0136 (6)0.0008 (5)0.0049 (5)0.0029 (5)
C130.0260 (8)0.0249 (8)0.0238 (8)0.0004 (6)0.0009 (6)0.0088 (6)
C80.0157 (7)0.0181 (7)0.0170 (7)0.0003 (5)0.0043 (5)0.0011 (5)
Geometric parameters (Å, º) top
N2—C31.3244 (17)C9—C101.387 (2)
N2—C11.3581 (17)C9—H90.93
O1B—N11.2354 (15)C5—C61.3358 (19)
O1A—N11.2357 (15)C5—H50.93
N3—C21.3522 (17)C2—H20.93
N3—C31.3832 (16)C11—C101.398 (2)
N3—C41.4631 (16)C11—H110.93
N1—C11.4246 (17)C6—H60.93
C12—C111.3816 (19)C10—C131.5057 (19)
C12—C71.4006 (19)C4—H4A0.96
C12—H120.93C4—H4B0.96
C1—C21.3700 (18)C4—H4C0.96
C7—C81.4015 (19)C13—H13A0.96
C7—C61.4632 (18)C13—H13B0.96
C3—C51.4479 (18)C13—H13C0.96
C9—C81.3853 (19)C8—H80.93
C3—N2—C1103.69 (11)N3—C2—H2128
C2—N3—C3108.00 (11)C1—C2—H2128
C2—N3—C4125.37 (11)C12—C11—C10121.71 (13)
C3—N3—C4126.51 (11)C12—C11—H11119.1
O1B—N1—O1A123.54 (11)C10—C11—H11119.1
O1B—N1—C1118.65 (11)C5—C6—C7126.59 (13)
O1A—N1—C1117.80 (11)C5—C6—H6116.7
C11—C12—C7120.71 (12)C7—C6—H6116.7
C11—C12—H12119.6C9—C10—C11117.74 (12)
C7—C12—H12119.6C9—C10—C13121.09 (13)
N2—C1—C2113.28 (12)C11—C10—C13121.16 (13)
N2—C1—N1121.19 (11)N3—C4—H4A109.5
C2—C1—N1125.23 (12)N3—C4—H4B109.5
C12—C7—C8117.33 (12)H4A—C4—H4B109.5
C12—C7—C6123.28 (12)N3—C4—H4C109.5
C8—C7—C6119.36 (12)H4A—C4—H4C109.5
N2—C3—N3111.11 (11)H4B—C4—H4C109.5
N2—C3—C5126.46 (12)C10—C13—H13A109.5
N3—C3—C5122.40 (11)C10—C13—H13B109.5
C8—C9—C10120.94 (12)H13A—C13—H13B109.5
C8—C9—H9119.5C10—C13—H13C109.5
C10—C9—H9119.5H13A—C13—H13C109.5
C6—C5—C3122.75 (12)H13B—C13—H13C109.5
C6—C5—H5118.6C9—C8—C7121.55 (13)
C3—C5—H5118.6C9—C8—H8119.2
N3—C2—C1103.93 (11)C7—C8—H8119.2
C3—N2—C1—C20.46 (15)C3—N3—C2—C10.06 (14)
C3—N2—C1—N1173.57 (11)C4—N3—C2—C1176.18 (12)
O1B—N1—C1—N23.97 (18)N2—C1—C2—N30.25 (15)
O1A—N1—C1—N2175.44 (11)N1—C1—C2—N3173.49 (12)
O1B—N1—C1—C2177.24 (12)C7—C12—C11—C101.1 (2)
O1A—N1—C1—C22.16 (19)C3—C5—C6—C7175.78 (12)
C11—C12—C7—C80.70 (19)C12—C7—C6—C52.8 (2)
C11—C12—C7—C6178.70 (12)C8—C7—C6—C5175.12 (13)
C1—N2—C3—N30.48 (14)C8—C9—C10—C111.05 (19)
C1—N2—C3—C5177.57 (12)C8—C9—C10—C13178.22 (12)
C2—N3—C3—N20.35 (14)C12—C11—C10—C90.2 (2)
C4—N3—C3—N2176.42 (11)C12—C11—C10—C13179.50 (13)
C2—N3—C3—C5177.79 (12)C10—C9—C8—C71.5 (2)
C4—N3—C3—C51.73 (19)C12—C7—C8—C90.57 (19)
N2—C3—C5—C67.0 (2)C6—C7—C8—C9177.51 (12)
N3—C3—C5—C6175.11 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.493.3702 (17)159
C4—H4C···O1Bi0.962.543.2676 (17)133
C13—H13B···O1Aii0.962.593.5347 (19)168
C4—H4B···Cgiii0.962.613.4336 (16)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.932.493.3702 (17)159.00
C4—H4C···O1Bi0.962.543.2676 (17)133.00
C13—H13B···O1Aii0.962.593.5347 (19)168.00
C4—H4B···Cgiii0.962.613.4336 (16)144.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

We are grateful to all personnel of the PHYSYNOR Laboratory, Universite Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique, Algérie) for financial support.

References

First citationAchar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048–2054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAlliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179.  CSD CrossRef CAS Google Scholar
First citationBhatia, S. C. & Shanbhag, V. D. (1984). J. Chromatogr. 3, 305, 325–334.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCarvalho, A. S., Gibaldi, D., Pinto, A. C., Bozza, M. & Boechat, N. (2006). Lett. Drug Des. Discov. 3, 98–101.  Web of Science CrossRef CAS Google Scholar
First citationDe Luca, L. (2006). Curr. Med. Chem. 13, 1–23.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoffer, M. & Grunberg, E. (1974). J. Med. Chem. 17, 1019–1020.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHunkeler, W., Mohler, H., Pieri, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R. & Haefely, W. (1981). Nature, 290, 514–516.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLeitsch, D., Burgess, A. G., Dunn, L. A., Krauer, K. G., Tan, K., Duchêne, M., Upcroft, P., Eckmann, M. & Upcroft, J. A. (2011). J. Antimicrob. Chemother. 66, 1756–1765.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLuo, Y., Li, H. K., Zhou, Y., Li, Z. L., Yan, T. & Zhu, H. L. (2010). Chem. Med. Chem. 5, 1110–1116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMamedov, V. A., Zhukova, N. A., Beschastnova, T. N., Gubaidullin, A. T., Rakov, D. V. & Rizvanov, I. Kh. (2011). Tetrahedron Lett. 52, 4280–4284.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzkay, Y., Iskar, I., Incesu, Z. & Akalin, G. E. (2010). Eur. J. Med. Chem. 45, 1–9.  Google Scholar
First citationSaadeh, H. A., Mosleh, I. M. & El-Abadelah, M. M. (2009). Molecules, 14, 2758–2767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanigawara, Y., Aoyama, N., Kita, T., Shirakawa, K., Komada, F., Kasuga, M. & Okumura, K. (1999). Clin. Pharmacol. Ther. 66, 528–534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTeimouri, A. & Chermahini, A. N. (2011). J. Mol. Catal. A Chem. 346, 39–45.  Web of Science CrossRef CAS Google Scholar
First citationThompson, A., Blaser, A., Anderson, R., Shinde, S., Franzblau, S., Ma, Z., Denny, W. & Palmer, B. (2009). J. Med. Chem. 52, 637–645.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrivedi, M. N., Gabhe, S. Y., Vachhani, U. D., Brijesh Patel, R. & Shah, C. P. (2011). J. Chem. Pharm. Res. 3, 313–319.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o962-o963
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds