organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1061-o1062

Crystal structure of 3,5-bis­­(4-chloro­phen­yl)-1-propyl-1,3,5-tri­aza­cyclo­hexane

aLaboratoire de chimie appliquée et technologie des matériaux, LCATM, Université Oum El Bouaghi, Algeria, bDépartement Sciences de la matière, Faculté des sciences exactes et sciences de la nature et de la vie, Université Oum El Bouaghi, Algeria, cUnité de recherche de CHimie de l'environnement et Moléculaire Structurale, CHEMS, Faculté des sciences exactes, Université Constantine 1, Algeria, and dLaboratoire de Cristallographie, Résonance Magnétique et Modélisations, UMR 7036 CNRS, Institut Jean Barriol, Université de Lorraine, Nancy, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 25 July 2014; accepted 22 August 2014; online 30 August 2014)

In the title mol­ecule, C18H21Cl2N3, the tri­aza­cyclo­hexane ring adopts a chair conformation with both 4-chloro­phenyl substituents in axial positions and the propyl group in an equatorial site. The dihedral angle between the planes of the benzene rings is 49.5 (1)°. In the crystal, mol­ecules are arranged in a head-to-tail fashion, forming columns along [010], and pairs of weak C—H⋯π inter­actions form inversion dimers between columns.

1. Related literature

For conformations of 1,3,5-triaryl derivatives of 1,3,5-tri­aza­cyclo­hexane, see: Baker et al. (1978[Baker, V. J., Ferguson, I. J., Katritzky, A. R., Patel, R. C. & Rahimi-Rastgoo, S. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 377-381.]); Bouchemma et al. (1989[Bouchemma, A., McCabe, P. H. & Sim, G. A. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 583-587.], 1990[Bouchemma, A., McCabe, P. H. & Sim, G. A. (1990). Acta Cryst. C46, 410-414.]); Bushweller (1995[Bushweller, C. H. (1995). In Conformational BehaVior of Six-Membered Rings. Analysis, Dynamics, and Stereoelectronic Effects, edited by E. Juaristi. New York: VCH Publishers.]); Kleinpeter et al. (2005[Kleinpeter, E., Koch, A. & Pihlaja, K. (2005). Tetrahedron, 61, 7349-7358.]); Duke et al. (1973[Duke, R. P., Jones, R. A. Y., Katritzky, A. R., Scattergood, R. & Riddell, F. G. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 2109-2111.]); Gilardi et al. (2003[Gilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187-o1188.]); Giumanini et al. (1985[Giumanini, A. G., Verardo, G., Randaccio, L., Bresciani-Pahor, N. & Traldi, P. (1985). J. Prakt. Chem. 327, 739-748.]); Latreche et al. (2006[Latreche, S., Bouchemma, A., Bouacida, S., Bouhenguel, M. & Mousser, A. (2006). Acta Cryst. E62, o4674-o4675.]); Mloston et al. (2006[Mloston, G., Jasinski, M., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 1304-1316.]); Freeman et al. (2005[Freeman, F., Asgari, N., Entezam, B., Gomarooni, F., Mac, J., Nguyen, M. H., Nguyen, N. N. T., Nguyen, T. P., Pham, N. B., Sultana, P., Welch, T. S. & Shainyan, B. A. (2005). J. Quantum Chem. 101, 40-54.]); Wiberg et al. (1999[Wiberg, K. B., Hammer, J. D., Castejon, H., Bailey, W. F., DeLeon, E. L. & Jarret, R. M. (1999). J. Org. Chem. 64, 2085.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H21Cl2N3

  • Mr = 350.28

  • Triclinic, [P \overline 1]

  • a = 6.0785 (3) Å

  • b = 10.3190 (6) Å

  • c = 14.4360 (8) Å

  • α = 91.570 (3)°

  • β = 91.946 (2)°

  • γ = 99.055 (3)°

  • V = 893.19 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 295 K

  • 0.22 × 0.13 × 0.07 mm

2.1.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.274, Tmax = 0.467

  • 13643 measured reflections

  • 3448 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.016

2.1.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 3448 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is centroid of C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACgi 0.96 2.92 3.668 (3) 134
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The conformational behaviour of substituted cyclohexanes as well as heterocyclohexanes has been the subject of numerous studies (Bushweller, 1995). The ring normally adopts the chair conformation unless specific intramolecular interactions stabilize the twist (Kleinpeter et al., 2005) or boat conformers (Freeman et al., 2005). Saturated six-membered rings are prevalent in organic chemistry. For cyclohexane, experimental and computational studies have established that the chair conformation is 5.5 kcal/ mol more stable than the twist form (Wiberg et al., 1999). N,N',N''-Trisubstituted 1,3,5-triazinanes are of interest as precursors for the preparation of different N-substituted imidazoles (Mloston et al., 2006). The heterocyclic nucleus is expected to adopt a chair conformation and four distinct patterns of substituent orientation have to be considered, eee, eea, eaa and aaa, where e = equatorial and a = axial, with each of the conformers having axial repulsions involving the substituents or lone pairs of electrons on the N atoms. Several 1,3,5-trialkyl derivatives have been investigated in solution by dipole moment measurements and the results interpreted in terms of the eee conformer, the eea conformer (Baker et al., 1978), and varying amounts of the eee, eea and eaa conformers (Duke et al., 1973). Various 1,3,5-triaryl-1,3,5-triazacyclohexanes adopt the diaxial-equatorial orientation of substituents in the solid state thus avoiding 1,3-diaxial lone-pair repulsions (Giumanini et al. 1985; Gilardi et al. 2003 Bouchemma et al. 1989; 1990).

In the present work, a new derivate (I) of triazacyclohexane is reported and molecular structure is shown in Fig. 1. The 1,3,5-triazacycolohexane ring is in a chair conformation which is typical of this ring (Gilardi et al. 2003). The stucture of a similar compound viz 1-propyl-3-5-bis-(4-fluorophenyl)-1,3,5- triazacycolohexane (II) has been reported (Latreche et al. 2006). In both (I) and (II) the heterocyclic rings adopt chair conformations with two fluorophenyl substituents situated in axial positions and a third group (propyl) equatorial. The dihedral angle between the benzene rings (C11-C16/C21-C26) is 49.5 (1)°. In the crystal, molecules are arranged in a 'head to tail' fashion forming columns along [010] (see Fig. 2) and pairs weak C—H···π interactions form inversion dimers between columns.

Related literature top

For conformations of 1,3,5-triaryl derivatives of 1,3,5-triazacyclohexane, see: Baker et al. (1978); Bouchemma et al. (1989, 1990); Bushweller (1995); Kleinpeter et al. (2005); Duke et al. (1973); Gilardi et al. (2003); Giumanini et al. (1985); Latreche et al. (2006); Mloston et al. (2006); Freeman et al. (2005); Wiberg et al. (1999).

Experimental top

The title compound was obtained by mixing a 2:1:1 stoichiometric ratio of propylamine and 4-chloroaniline with formalin in ethanol (25 ml) at 293K. The resulting solution was evaporated on a rotary evaporator to dryness and the white residue was recrystallized from cyclohexane.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with C—H distances of 0.93 Å (Caromatic), 0.97 Å (Cmethylene) and 0.96 Å (Cmethyl) with Uiso(H) = 1.2 Ueq(Caromatic and Cmethylene) or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the 'head to tail' arrangement of molecules arranged in columns.
3,5-Bis(4-chlorophenyl)-1-propyl-1,3,5-triazacyclohexane top
Crystal data top
C18H21Cl2N3Z = 2
Mr = 350.28F(000) = 368
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0785 (3) ÅCell parameters from 13346 reflections
b = 10.3190 (6) Åθ = 1.5–27.3°
c = 14.4360 (8) ŵ = 0.37 mm1
α = 91.570 (3)°T = 295 K
β = 91.946 (2)°Prism, colourless
γ = 99.055 (3)°0.22 × 0.13 × 0.07 mm
V = 893.19 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω and ϕ scansθmax = 27.3°, θmin = 1.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 77
Tmin = 0.274, Tmax = 0.467k = 1212
13643 measured reflectionsl = 1717
3448 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.413P]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H21Cl2N3γ = 99.055 (3)°
Mr = 350.28V = 893.19 (8) Å3
Triclinic, P1Z = 2
a = 6.0785 (3) ÅMo Kα radiation
b = 10.3190 (6) ŵ = 0.37 mm1
c = 14.4360 (8) ÅT = 295 K
α = 91.570 (3)°0.22 × 0.13 × 0.07 mm
β = 91.946 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2751 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.467Rint = 0.016
13643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3448 reflectionsΔρmin = 0.25 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3001 (4)0.4766 (3)0.25020 (16)0.0613 (6)
H1A0.35470.3830.24590.074*
H1B0.42810.52210.25050.074*
C20.0783 (4)0.6456 (2)0.34207 (17)0.0633 (6)
H2A0.01030.66530.39930.076*
H2B0.19970.69640.34320.076*
C30.0772 (5)0.6525 (2)0.17830 (18)0.0652 (6)
H3A0.19790.70390.17780.078*
H3B0.0130.67670.12540.078*
C40.1485 (6)0.8253 (3)0.2756 (2)0.0847 (8)
H4A0.02830.87510.26380.102*
H4B0.20190.84380.33940.102*
C50.3281 (8)0.8689 (4)0.2147 (3)0.1185 (14)
H5A0.26880.8650.15130.142*
H5B0.43680.80960.21850.142*
C60.4450 (8)1.0093 (4)0.2390 (3)0.1321 (17)
H6A0.33661.06770.23950.198*
H6B0.55311.03640.19350.198*
H6C0.51841.01170.29910.198*
C110.0360 (4)0.4255 (2)0.13332 (14)0.0505 (5)
C120.1801 (4)0.4642 (2)0.10651 (16)0.0556 (5)
H120.24670.55110.11660.067*
C130.2992 (4)0.3762 (2)0.06492 (16)0.0590 (6)
H130.44360.40410.04650.071*
C140.2027 (4)0.2473 (2)0.05101 (16)0.0585 (6)
C150.0100 (4)0.2056 (2)0.07759 (19)0.0691 (7)
H150.07420.11810.06850.083*
C160.1281 (4)0.2940 (2)0.11776 (19)0.0666 (6)
H160.27320.26530.1350.08*
C210.0324 (4)0.4175 (2)0.36755 (14)0.0491 (5)
C220.1257 (4)0.2865 (2)0.37598 (18)0.0622 (6)
H220.27350.25890.35660.075*
C230.0036 (4)0.1967 (2)0.41250 (19)0.0660 (6)
H230.06820.10940.41730.079*
C240.2138 (4)0.2375 (2)0.44168 (16)0.0583 (6)
C250.3124 (4)0.3650 (2)0.43325 (16)0.0565 (5)
H250.46050.39130.45260.068*
C260.1900 (4)0.4544 (2)0.39570 (15)0.0536 (5)
H260.25790.54080.38920.064*
N10.1697 (3)0.51418 (19)0.16948 (13)0.0578 (5)
N20.1687 (3)0.50789 (19)0.33683 (13)0.0561 (5)
N30.0600 (4)0.68403 (18)0.26379 (14)0.0615 (5)
Cl10.34990 (13)0.13680 (7)0.00400 (5)0.0841 (3)
Cl20.36408 (14)0.12627 (7)0.49405 (6)0.0865 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (13)0.0749 (16)0.0606 (14)0.0138 (11)0.0016 (10)0.0033 (11)
C20.0733 (16)0.0592 (14)0.0614 (14)0.0235 (12)0.0035 (12)0.0017 (11)
C30.0750 (16)0.0586 (14)0.0659 (15)0.0211 (12)0.0029 (12)0.0117 (11)
C40.108 (2)0.0557 (15)0.090 (2)0.0095 (15)0.0082 (18)0.0044 (14)
C50.146 (4)0.088 (2)0.115 (3)0.010 (2)0.040 (3)0.009 (2)
C60.173 (4)0.088 (3)0.115 (3)0.044 (3)0.017 (3)0.006 (2)
C110.0516 (12)0.0559 (12)0.0421 (10)0.0039 (10)0.0054 (9)0.0039 (9)
C120.0574 (13)0.0499 (12)0.0562 (12)0.0013 (10)0.0019 (10)0.0039 (10)
C130.0545 (13)0.0635 (14)0.0572 (13)0.0030 (11)0.0037 (10)0.0052 (11)
C140.0639 (14)0.0586 (13)0.0519 (12)0.0084 (11)0.0040 (10)0.0039 (10)
C150.0691 (16)0.0530 (14)0.0799 (17)0.0045 (12)0.0021 (13)0.0076 (12)
C160.0536 (13)0.0641 (15)0.0778 (16)0.0036 (11)0.0046 (12)0.0022 (12)
C210.0510 (12)0.0533 (12)0.0431 (11)0.0077 (9)0.0077 (9)0.0002 (9)
C220.0524 (13)0.0587 (14)0.0725 (15)0.0012 (11)0.0051 (11)0.0020 (11)
C230.0690 (16)0.0492 (13)0.0782 (16)0.0015 (11)0.0125 (13)0.0071 (11)
C240.0664 (15)0.0554 (13)0.0564 (13)0.0164 (11)0.0126 (11)0.0087 (10)
C250.0528 (12)0.0610 (13)0.0561 (13)0.0102 (10)0.0020 (10)0.0024 (10)
C260.0562 (13)0.0486 (12)0.0541 (12)0.0018 (10)0.0059 (10)0.0023 (9)
N10.0583 (11)0.0619 (11)0.0538 (11)0.0113 (9)0.0016 (8)0.0046 (9)
N20.0567 (11)0.0603 (11)0.0525 (10)0.0130 (9)0.0024 (8)0.0000 (8)
N30.0734 (13)0.0446 (10)0.0665 (12)0.0104 (9)0.0022 (10)0.0023 (9)
Cl10.0883 (5)0.0780 (5)0.0872 (5)0.0207 (4)0.0049 (4)0.0199 (4)
Cl20.0940 (5)0.0765 (5)0.0981 (6)0.0357 (4)0.0131 (4)0.0278 (4)
Geometric parameters (Å, º) top
C1—N11.458 (3)C11—C161.393 (3)
C1—N21.461 (3)C11—N11.417 (3)
C1—H1A0.97C12—C131.384 (3)
C1—H1B0.97C12—H120.93
C2—N21.439 (3)C13—C141.372 (3)
C2—N31.458 (3)C13—H130.93
C2—H2A0.97C14—C151.368 (4)
C2—H2B0.97C14—Cl11.747 (2)
C3—N11.450 (3)C15—C161.374 (4)
C3—N31.465 (3)C15—H150.93
C3—H3A0.97C16—H160.93
C3—H3B0.97C21—C261.389 (3)
C4—C51.448 (5)C21—C221.392 (3)
C4—N31.475 (3)C21—N21.412 (3)
C4—H4A0.97C22—C231.380 (4)
C4—H4B0.97C22—H220.93
C5—C61.536 (4)C23—C241.371 (4)
C5—H5A0.97C23—H230.93
C5—H5B0.97C24—C251.367 (3)
C6—H6A0.96C24—Cl21.747 (2)
C6—H6B0.96C25—C261.384 (3)
C6—H6C0.96C25—H250.93
C11—C121.383 (3)C26—H260.93
N1—C1—N2111.86 (19)C13—C12—H12119.3
N1—C1—H1A109.2C14—C13—C12119.6 (2)
N2—C1—H1A109.2C14—C13—H13120.2
N1—C1—H1B109.2C12—C13—H13120.2
N2—C1—H1B109.2C15—C14—C13120.5 (2)
H1A—C1—H1B107.9C15—C14—Cl1119.76 (19)
N2—C2—N3111.81 (18)C13—C14—Cl1119.70 (19)
N2—C2—H2A109.3C14—C15—C16119.6 (2)
N3—C2—H2A109.3C14—C15—H15120.2
N2—C2—H2B109.3C16—C15—H15120.2
N3—C2—H2B109.3C15—C16—C11121.7 (2)
H2A—C2—H2B107.9C15—C16—H16119.1
N1—C3—N3112.04 (19)C11—C16—H16119.1
N1—C3—H3A109.2C26—C21—C22117.6 (2)
N3—C3—H3A109.2C26—C21—N2123.0 (2)
N1—C3—H3B109.2C22—C21—N2119.3 (2)
N3—C3—H3B109.2C23—C22—C21121.4 (2)
H3A—C3—H3B107.9C23—C22—H22119.3
C5—C4—N3113.4 (3)C21—C22—H22119.3
C5—C4—H4A108.9C24—C23—C22119.4 (2)
N3—C4—H4A108.9C24—C23—H23120.3
C5—C4—H4B108.9C22—C23—H23120.3
N3—C4—H4B108.9C25—C24—C23120.9 (2)
H4A—C4—H4B107.7C25—C24—Cl2119.54 (19)
C4—C5—C6112.8 (3)C23—C24—Cl2119.48 (19)
C4—C5—H5A109C24—C25—C26119.5 (2)
C6—C5—H5A109C24—C25—H25120.2
C4—C5—H5B109C26—C25—H25120.2
C6—C5—H5B109C25—C26—C21121.2 (2)
H5A—C5—H5B107.8C25—C26—H26119.4
C5—C6—H6A109.5C21—C26—H26119.4
C5—C6—H6B109.5C11—N1—C3118.73 (19)
H6A—C6—H6B109.5C11—N1—C1118.44 (19)
C5—C6—H6C109.5C3—N1—C1109.38 (19)
H6A—C6—H6C109.5C21—N2—C2118.41 (19)
H6B—C6—H6C109.5C21—N2—C1118.07 (18)
C12—C11—C16117.3 (2)C2—N2—C1109.76 (19)
C12—C11—N1123.2 (2)C2—N3—C3108.2 (2)
C16—C11—N1119.4 (2)C2—N3—C4108.2 (2)
C11—C12—C13121.3 (2)C3—N3—C4112.7 (2)
C11—C12—H12119.3
N3—C4—C5—C6170.1 (3)C16—C11—N1—C3175.1 (2)
C16—C11—C12—C130.7 (3)C12—C11—N1—C1136.1 (2)
N1—C11—C12—C13175.0 (2)C16—C11—N1—C148.3 (3)
C11—C12—C13—C140.9 (3)N3—C3—N1—C1183.0 (3)
C12—C13—C14—C150.2 (4)N3—C3—N1—C157.2 (3)
C12—C13—C14—Cl1178.45 (18)N2—C1—N1—C1184.7 (2)
C13—C14—C15—C160.6 (4)N2—C1—N1—C355.7 (3)
Cl1—C14—C15—C16177.6 (2)C26—C21—N2—C25.2 (3)
C14—C15—C16—C110.8 (4)C22—C21—N2—C2170.6 (2)
C12—C11—C16—C150.1 (4)C26—C21—N2—C1131.2 (2)
N1—C11—C16—C15176.0 (2)C22—C21—N2—C153.0 (3)
C26—C21—C22—C231.2 (3)N3—C2—N2—C2181.6 (2)
N2—C21—C22—C23174.9 (2)N3—C2—N2—C158.1 (3)
C21—C22—C23—C240.4 (4)N1—C1—N2—C2183.5 (3)
C22—C23—C24—C251.4 (4)N1—C1—N2—C256.4 (3)
C22—C23—C24—Cl2176.34 (19)N2—C2—N3—C358.6 (2)
C23—C24—C25—C260.7 (4)N2—C2—N3—C4179.0 (2)
Cl2—C24—C25—C26177.02 (17)N1—C3—N3—C258.3 (3)
C24—C25—C26—C210.9 (3)N1—C3—N3—C4177.8 (2)
C22—C21—C26—C251.8 (3)C5—C4—N3—C2166.4 (3)
N2—C21—C26—C25174.05 (19)C5—C4—N3—C374.0 (4)
C12—C11—N1—C30.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cgi0.962.923.668 (3)134
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cgi0.962.923.668 (3)134.00
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work is supported by laboratory LCATM, Université Oum El Bouaghi, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

References

First citationBaker, V. J., Ferguson, I. J., Katritzky, A. R., Patel, R. C. & Rahimi-Rastgoo, S. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 377–381.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouchemma, A., McCabe, P. H. & Sim, G. A. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 583–587.  CSD CrossRef Web of Science Google Scholar
First citationBouchemma, A., McCabe, P. H. & Sim, G. A. (1990). Acta Cryst. C46, 410–414.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBushweller, C. H. (1995). In Conformational BehaVior of Six-Membered Rings. Analysis, Dynamics, and Stereoelectronic Effects, edited by E. Juaristi. New York: VCH Publishers.  Google Scholar
First citationDuke, R. P., Jones, R. A. Y., Katritzky, A. R., Scattergood, R. & Riddell, F. G. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 2109–2111.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreeman, F., Asgari, N., Entezam, B., Gomarooni, F., Mac, J., Nguyen, M. H., Nguyen, N. N. T., Nguyen, T. P., Pham, N. B., Sultana, P., Welch, T. S. & Shainyan, B. A. (2005). J. Quantum Chem. 101, 40–54.  Web of Science CrossRef CAS Google Scholar
First citationGilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187–o1188.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGiumanini, A. G., Verardo, G., Randaccio, L., Bresciani-Pahor, N. & Traldi, P. (1985). J. Prakt. Chem. 327, 739–748.  CSD CrossRef CAS Web of Science Google Scholar
First citationKleinpeter, E., Koch, A. & Pihlaja, K. (2005). Tetrahedron, 61, 7349–7358.  Web of Science CrossRef CAS Google Scholar
First citationLatreche, S., Bouchemma, A., Bouacida, S., Bouhenguel, M. & Mousser, A. (2006). Acta Cryst. E62, o4674–o4675.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMloston, G., Jasinski, M., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 1304–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiberg, K. B., Hammer, J. D., Castejon, H., Bailey, W. F., DeLeon, E. L. & Jarret, R. M. (1999). J. Org. Chem. 64, 2085.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1061-o1062
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds