organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1015-o1016

Crystal structure of 4-[(E)-(4-chloro­benzyl­­idene)amino]-3-(2-methyl­benz­yl)-1H-1,2,4-triazole-5(4H)-thione

aSchool of Physics, Shri Mata Vaishno Devi University, Katra 182 320, J&K, India, bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, D.K., Mangalore, India, cDepartment of Chemistry, P A College of Engineering, Nadupadavu 574 153, D.K., Mangalore, India, and dX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 5 August 2014; accepted 12 August 2014; online 16 August 2014)

In the title mol­ecule, C17H15ClN4S, the benzene rings form dihedral angles of 16.6 (1) and 77.2 (1)° with the triazole ring. The dihedral angle between the benzene rings is 86.6 (1)°. In the crystal, pairs of N—H⋯S hydrogen bonds form inversion dimers with graph-set notation R22(8). Weak C—H⋯S hydrogen bonds link these dimers into layers parallel to (100). Weak intra­molecular C—H⋯S and C—H⋯N contacts are observed.

1. Related literature

For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991[Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met.-Org. Chem. 21, 1299-1311.]); Yadav et al. (1994[Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 925-939.]); Reddy & Lirgappa (1994[Reddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919-923.]); Wyrzykiewicz & Prukah (1998[Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381-387.]); Galic et al. (2001[Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187-194.]). For the biological activity of 1,2,4-triazole derivatives, see: Jones et al. (1965[Jones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676-680.]); Kane et al. (1988[Kane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.]); Mullican et al. (1993[Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090-1099.]); Cansiz et al. (2001[Cansiz, A., Servi, S., Koparir, M., Altintas, M. & Digrak, M. (2001). J. Chem. Soc. Pak. 23, 237-239.]). For the biological activity of sulfur- and nitro­gen-containing compounds, see: Malik et al. (2011[Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387-1394.]); Wei & Bell (1982[Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.]). For related structures, see: Ding et al. (2009[Ding, Q.-C., Huang, Y.-L., Jin, J.-Y., Zhang, L.-X., Zhou, C.-F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105-106.]); Vinduvahini et al. (2011[Vinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535-o2536.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Sarojini et al. (2013[Sarojini, B. K., Manjula, P. S., Hegde, G., Kour, D., Gupta, V. K. & Kant, R. (2013). Acta Cryst. E69, o718-o719.], 2014a[Sarojini, B. K., Manjula, P. S., Narayana, B. & Jasinski, J. P. (2014a). Acta Cryst. E70, o733-o734.],b[Sarojini, B. K., Manjula, P. S., Kaur, M., Anderson, B. J. & Jasinski, J. P. (2014b). Acta Cryst. E70, o57-o58.]). For standard bond-lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H15ClN4S

  • Mr = 342.84

  • Monoclinic, P 21 /c

  • a = 13.4821 (9) Å

  • b = 6.8479 (4) Å

  • c = 18.4895 (12) Å

  • β = 100.443 (6)°

  • V = 1678.75 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.858, Tmax = 1.000

  • 6947 measured reflections

  • 3306 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.04

  • 3306 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯S1i 0.84 (3) 2.43 (3) 3.261 (2) 167 (2)
C17—H17B⋯S1ii 0.96 2.81 3.710 (3) 157
C17—H17C⋯N4 0.96 2.59 3.321 (4) 134
C7—H7⋯S1 0.93 2.45 3.203 (2) 138
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The synthesis and structural investigation of Schiff base compounds have attracted much attention due to their interesting structures and potential applications. During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid 1991; Yadav et al., 1994). The derivatives of 1,2,4-triazole are known to exhibit anti-inflammatory (Mullican et al., 1993), antiviral (Jones et al., 1965), antimicrobial (Cansiz et al., 2001), and antidepressant activity (Kane et al., 1988). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Prukah, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1982) and fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity. The crystal structures of some of the related Schiff's bases viz: 3-Methyl-4-{(E)-[4-(methylsulfanyl)benzylidene]amino}-1H-1, 2,4-triazole-5(4H)-thione; 4-[(E)-(4-chloro¬benzyl-idene)amino]-3-methyl-1H -1,2,4-triazole-5(4H)-thione; 4-[(E)-(4-Hy¬droxy¬benzyl¬idene)amino] -3-methyl-1H-1,2,4-triazole-5(4H)-thione (Sarojini et al., 2013, 2014a, b); 3-[2-(2,6-Dichloro-anilino)benzyl]-4- [(4-methoxybenzylidene)amino]-1H-1,2,4-triazole-5(4H) -thione (Vinduvahini et al., 2011); 3-(Adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4- [(E)-(4-hydroxy-benzylidene)amino]-1H-1,2,4-triazole-5(4H) -thione (Almutairi et al., 2012);(E)-4-[(4-Fluorobenzylidene)amino]-3-[1- (4-isobutylphenyl)ethyl]-1-(morpholinomethyl)-1H- 1,2,4-triazole-5(4H)-thione methanol hemisolvate, (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino) -1H-1,2,4-triazole-5(4H)-thione (Ding et al., 2009) have been reported. In the title compound (I) (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987). The dihedral angles between the mean planes of the chloro-substituted benzene ring and methyl-substituted benzene ring is 86.6 (1)°. The triazole ring forms dihedral angles of 16.6 (1) and 77.2 (1)°, respectively, with the C1—C6 and C11—C16 rings. In the crystal, N—H···S hydrogen bonds and two intramolecular interactions of the type C—H···N and C—H···S are observed (Table 2). Centrosymmetric dimeric aggregates are formed by pairs of N3—H3'···S1 hydrogen bonds forming R22(8) ring motifs (Bernstein et al., 1995). Intermolecular C—H···S hydrogen bonds link the molecules into a two-dimensional network paralell to (100) (Fig. 3).

Related literature top

For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994); Reddy & Lirgappa (1994); Wyrzykiewicz & Prukah (1998); Galic et al. (2001). For the biological activity of 1,2,4-triazole derivatives, see: Jones et al. (1965); Kane et al. (1988); Mullican et al. (1993); Cansiz et al. (2001). For the biological activity of sulfur- and nitrogen-containing compounds, see: Malik et al. (2011); Wei & Bell (1982). For related structures, see: Ding et al. (2009); Vinduvahini et al. (2011); Almutairi et al. (2012); Sarojini et al. (2013, 2014a,b). For standard bond-lengths, see: Allen et al. (1987). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

4-Chlorobenzaldehyde (0.01 mol, 1.40 g) in ethanol (15 ml) was added to 4-amino-3-(2-methylbenzyl)-1H-1,2,4-triazole-5(4H)-thione (0.01 mol, 2.20 g) and heated to form a clear solution. To this few drops of conc. H2SO4 were added as a catalyst and refluxed for 36 h on water bath. The precipitate formed was filtered and recrystallized from methanol to get the title compound. Single crystals were obtained from methanol (mp. 443–445 K).

Refinement top

H3' attached to N3 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 A; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A pair molecules of the title compound. Dashed lines indicate N—H···S hydrogen bonds forming R22(8) graph set motifs linking the molecules into dimers.
[Figure 3] Fig. 3. The packing arrangement of molecules viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-[(E)-(4-chlorobenzylidene)amino]-3-(2-methylbenzyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C17H15ClN4SF(000) = 712
Mr = 342.84Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1855 reflections
a = 13.4821 (9) Åθ = 3.6–26.5°
b = 6.8479 (4) ŵ = 0.36 mm1
c = 18.4895 (12) ÅT = 293 K
β = 100.443 (6)°Block, white
V = 1678.75 (18) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3306 independent reflections
Radiation source: fine-focus sealed tube2252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1612
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 85
Tmin = 0.858, Tmax = 1.000l = 2218
6947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.2834P]
where P = (Fo2 + 2Fc2)/3
3306 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H15ClN4SV = 1678.75 (18) Å3
Mr = 342.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4821 (9) ŵ = 0.36 mm1
b = 6.8479 (4) ÅT = 293 K
c = 18.4895 (12) Å0.30 × 0.20 × 0.20 mm
β = 100.443 (6)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3306 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2252 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.028
6947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3306 reflectionsΔρmin = 0.24 e Å3
213 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07980 (5)0.72738 (9)0.46649 (4)0.0604 (2)
Cl10.43301 (6)0.35687 (10)0.54977 (5)0.0791 (3)
N20.11694 (13)0.6086 (2)0.61288 (11)0.0416 (5)
N10.17171 (13)0.4355 (2)0.61469 (11)0.0444 (5)
C60.27146 (17)0.0685 (3)0.61625 (13)0.0454 (6)
H60.24240.09610.65700.055*
C90.09068 (17)0.6762 (3)0.67729 (13)0.0450 (6)
C10.25988 (17)0.1987 (3)0.55810 (13)0.0468 (6)
N40.03338 (15)0.8286 (3)0.66436 (12)0.0576 (6)
C70.20400 (19)0.3820 (3)0.55848 (15)0.0550 (7)
H70.19240.45960.51650.066*
C40.36590 (18)0.1416 (3)0.55312 (14)0.0491 (6)
C50.32542 (17)0.1010 (3)0.61443 (14)0.0474 (6)
H50.33440.18680.65410.057*
N30.02267 (16)0.8556 (3)0.59013 (13)0.0569 (6)
C110.23908 (18)0.6491 (3)0.77823 (12)0.0459 (6)
C100.12992 (18)0.5931 (3)0.75064 (14)0.0516 (6)
H10A0.12440.45200.74810.062*
H10B0.08900.63910.78530.062*
C120.31449 (19)0.5143 (4)0.77442 (14)0.0549 (7)
H120.29720.38990.75620.066*
C80.07340 (16)0.7288 (3)0.55585 (14)0.0456 (6)
C30.3549 (2)0.0174 (4)0.49465 (15)0.0663 (8)
H30.38260.04730.45340.080*
C160.2652 (2)0.8359 (4)0.80624 (13)0.0554 (7)
C140.4396 (2)0.7446 (5)0.82462 (17)0.0775 (9)
H140.50690.77770.84070.093*
C20.3021 (2)0.1532 (4)0.49789 (15)0.0699 (8)
H20.29480.23970.45850.084*
C170.1871 (2)0.9886 (4)0.81350 (16)0.0759 (9)
H17A0.21991.10300.83660.114*
H17B0.14120.93820.84300.114*
H17C0.15061.02210.76560.114*
C150.3658 (3)0.8780 (4)0.82831 (16)0.0738 (9)
H150.38421.00200.84640.089*
C130.4148 (2)0.5614 (5)0.79722 (15)0.0720 (8)
H130.46490.47010.79410.086*
H3'0.0073 (19)0.954 (4)0.5690 (14)0.064 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0735 (5)0.0570 (4)0.0470 (4)0.0249 (3)0.0007 (3)0.0027 (3)
Cl10.0901 (6)0.0569 (4)0.0945 (6)0.0351 (4)0.0281 (5)0.0062 (4)
N20.0369 (10)0.0382 (10)0.0481 (12)0.0069 (8)0.0032 (9)0.0019 (9)
N10.0408 (11)0.0388 (10)0.0514 (13)0.0099 (8)0.0023 (10)0.0040 (9)
C60.0512 (14)0.0440 (13)0.0430 (15)0.0035 (11)0.0138 (12)0.0008 (11)
C90.0403 (13)0.0465 (13)0.0502 (16)0.0032 (10)0.0135 (11)0.0024 (11)
C10.0506 (14)0.0438 (13)0.0451 (15)0.0129 (10)0.0062 (12)0.0019 (11)
N40.0574 (13)0.0605 (13)0.0577 (15)0.0195 (10)0.0177 (11)0.0014 (11)
C70.0651 (17)0.0471 (14)0.0531 (17)0.0207 (12)0.0120 (14)0.0080 (12)
C40.0500 (14)0.0422 (13)0.0553 (16)0.0108 (11)0.0101 (12)0.0024 (12)
C50.0526 (15)0.0406 (12)0.0486 (15)0.0067 (11)0.0079 (12)0.0093 (11)
N30.0616 (14)0.0550 (13)0.0536 (15)0.0255 (11)0.0095 (11)0.0014 (11)
C110.0556 (15)0.0528 (14)0.0308 (13)0.0013 (11)0.0119 (11)0.0091 (11)
C100.0585 (16)0.0488 (13)0.0522 (16)0.0001 (12)0.0223 (13)0.0064 (12)
C120.0590 (17)0.0611 (15)0.0430 (16)0.0058 (13)0.0051 (13)0.0030 (12)
C80.0397 (13)0.0430 (12)0.0517 (15)0.0075 (10)0.0021 (11)0.0046 (11)
C30.090 (2)0.0651 (17)0.0493 (17)0.0296 (15)0.0280 (15)0.0052 (14)
C160.0769 (19)0.0574 (15)0.0338 (14)0.0077 (14)0.0151 (13)0.0048 (12)
C140.063 (2)0.108 (3)0.057 (2)0.0215 (19)0.0024 (16)0.0029 (18)
C20.101 (2)0.0657 (17)0.0464 (17)0.0376 (16)0.0231 (16)0.0186 (14)
C170.115 (3)0.0588 (17)0.059 (2)0.0044 (16)0.0285 (18)0.0072 (14)
C150.092 (2)0.076 (2)0.0499 (18)0.0228 (18)0.0031 (17)0.0016 (15)
C130.0611 (19)0.103 (2)0.0496 (18)0.0169 (17)0.0025 (15)0.0046 (16)
Geometric parameters (Å, º) top
S1—C81.670 (3)C11—C121.384 (3)
Cl1—C41.736 (2)C11—C161.401 (3)
N2—C81.382 (3)C11—C101.517 (3)
N2—C91.382 (3)C10—H10A0.9700
N2—N11.394 (2)C10—H10B0.9700
N1—C71.252 (3)C12—C131.380 (4)
C6—C51.374 (3)C12—H120.9300
C6—C11.383 (3)C3—C21.375 (3)
C6—H60.9300C3—H30.9300
C9—N41.295 (3)C16—C151.375 (4)
C9—C101.477 (3)C16—C171.507 (4)
C1—C21.375 (3)C14—C151.362 (4)
C1—C71.465 (3)C14—C131.371 (4)
N4—N31.366 (3)C14—H140.9300
C7—H70.9300C2—H20.9300
C4—C31.363 (3)C17—H17A0.9600
C4—C51.373 (3)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
N3—C81.335 (3)C15—H150.9300
N3—H3'0.85 (2)C13—H130.9300
C8—N2—C9108.55 (18)C11—C10—H10B109.2
C8—N2—N1132.44 (19)H10A—C10—H10B107.9
C9—N2—N1118.78 (19)C13—C12—C11121.1 (3)
C7—N1—N2119.4 (2)C13—C12—H12119.4
C5—C6—C1120.7 (2)C11—C12—H12119.4
C5—C6—H6119.6N3—C8—N2102.0 (2)
C1—C6—H6119.6N3—C8—S1126.62 (18)
N4—C9—N2110.4 (2)N2—C8—S1131.34 (17)
N4—C9—C10125.6 (2)C4—C3—C2118.6 (2)
N2—C9—C10123.8 (2)C4—C3—H3120.7
C2—C1—C6118.6 (2)C2—C3—H3120.7
C2—C1—C7119.1 (2)C15—C16—C11118.0 (3)
C6—C1—C7122.3 (2)C15—C16—C17119.7 (3)
C9—N4—N3104.2 (2)C11—C16—C17122.3 (3)
N1—C7—C1120.7 (2)C15—C14—C13120.1 (3)
N1—C7—H7119.6C15—C14—H14120.0
C1—C7—H7119.6C13—C14—H14120.0
C3—C4—C5121.8 (2)C3—C2—C1121.4 (2)
C3—C4—Cl1119.0 (2)C3—C2—H2119.3
C5—C4—Cl1119.28 (19)C1—C2—H2119.3
C4—C5—C6118.9 (2)C16—C17—H17A109.5
C4—C5—H5120.6C16—C17—H17B109.5
C6—C5—H5120.6H17A—C17—H17B109.5
C8—N3—N4114.8 (2)C16—C17—H17C109.5
C8—N3—H3'123.0 (18)H17A—C17—H17C109.5
N4—N3—H3'121.7 (18)H17B—C17—H17C109.5
C12—C11—C16119.3 (2)C14—C15—C16122.4 (3)
C12—C11—C10119.4 (2)C14—C15—H15118.8
C16—C11—C10121.2 (2)C16—C15—H15118.8
C9—C10—C11112.06 (19)C14—C13—C12119.1 (3)
C9—C10—H10A109.2C14—C13—H13120.4
C11—C10—H10A109.2C12—C13—H13120.4
C9—C10—H10B109.2
C8—N2—N1—C712.7 (3)C10—C11—C12—C13178.3 (2)
C9—N2—N1—C7173.4 (2)N4—N3—C8—N22.0 (3)
C8—N2—C9—N40.5 (3)N4—N3—C8—S1177.43 (18)
N1—N2—C9—N4174.75 (18)C9—N2—C8—N31.4 (2)
C8—N2—C9—C10175.1 (2)N1—N2—C8—N3172.9 (2)
N1—N2—C9—C109.7 (3)C9—N2—C8—S1177.92 (18)
C5—C6—C1—C21.1 (4)N1—N2—C8—S17.7 (4)
C5—C6—C1—C7179.2 (2)C5—C4—C3—C20.3 (4)
N2—C9—N4—N30.7 (3)Cl1—C4—C3—C2179.7 (2)
C10—C9—N4—N3176.2 (2)C12—C11—C16—C150.6 (3)
N2—N1—C7—C1178.63 (19)C10—C11—C16—C15178.2 (2)
C2—C1—C7—N1174.1 (3)C12—C11—C16—C17178.7 (2)
C6—C1—C7—N16.1 (4)C10—C11—C16—C172.5 (3)
C3—C4—C5—C60.8 (4)C4—C3—C2—C10.7 (5)
Cl1—C4—C5—C6179.26 (18)C6—C1—C2—C30.0 (4)
C1—C6—C5—C41.5 (4)C7—C1—C2—C3179.7 (3)
C9—N4—N3—C81.7 (3)C13—C14—C15—C160.9 (5)
N4—C9—C10—C11101.5 (3)C11—C16—C15—C140.8 (4)
N2—C9—C10—C1173.5 (3)C17—C16—C15—C14178.5 (3)
C12—C11—C10—C9102.1 (2)C15—C14—C13—C120.7 (5)
C16—C11—C10—C976.6 (3)C11—C12—C13—C140.5 (4)
C16—C11—C12—C130.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.84 (3)2.43 (3)3.261 (2)167 (2)
C17—H17B···S1ii0.962.813.710 (3)157
C17—H17C···N40.962.593.321 (4)134
C7—H7···S10.932.453.203 (2)138
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3'···S1i0.84 (3)2.43 (3)3.261 (2)167 (2)
C17—H17B···S1ii0.962.813.710 (3)157
C17—H17C···N40.962.593.321 (4)134
C7—H7···S10.932.453.203 (2)138
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCansiz, A., Servi, S., Koparir, M., Altintas, M. & Digrak, M. (2001). J. Chem. Soc. Pak. 23, 237–239.  CAS Google Scholar
First citationDing, Q.-C., Huang, Y.-L., Jin, J.-Y., Zhang, L.-X., Zhou, C.-F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105–106.  CAS Google Scholar
First citationDubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met.-Org. Chem. 21, 1299–1311.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194.  CAS Google Scholar
First citationJones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676–680.  CrossRef CAS Web of Science Google Scholar
First citationKane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMalik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.  Web of Science CrossRef CAS Google Scholar
First citationMullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919–923.  Google Scholar
First citationSarojini, B. K., Manjula, P. S., Hegde, G., Kour, D., Gupta, V. K. & Kant, R. (2013). Acta Cryst. E69, o718–o719.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Manjula, P. S., Narayana, B. & Jasinski, J. P. (2014a). Acta Cryst. E70, o733–o734.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Manjula, P. S., Kaur, M., Anderson, B. J. & Jasinski, J. P. (2014b). Acta Cryst. E70, o57–o58.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535–o2536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.  Google Scholar
First citationWyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–387.  CrossRef CAS Google Scholar
First citationYadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 925–939.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1015-o1016
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds