organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(4-meth­­oxy­phen­yl)ethanone O-de­hydro­abietyloxime

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Key and Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife (Received 9 July 2014; accepted 22 July 2014; online 1 August 2014)

In the title compound, C29H37NO3 {systematic name: (E)-1-(4-meth­oxy­phen­yl)ethanone O-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carbon­yl]oxime}, a new derivative of de­hydro­abietic acid, the two cyclo­hexane rings exhibit a trans-ring junction and are in chair and half-chair conformations. The C=N double bond exhibits an E conformation.

1. Related literature

For the biological activity of related compounds, see: Cui et al. (2013[Cui, Y. J., Rao, X. P., Shang, S. B., Song, J. & Gao, Y. Q. (2013). Lett. Drug Des. Discov. 10, 102-110.]); Li et al. (2008[Li, F., He, L., Song, Z. Q., Yao, J. C., Rao, X. P. & Li, H. T. (2008). J. Pharm. Pharmacol. 60, 205-211.]); Rao et al. (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56,1575-1578.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429-437.]); For the crystal structures of a related compound, see: Rao et al. (2009[Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C29H37NO3

  • Mr = 447.60

  • Orthorhombic, P 21 21 21

  • a = 6.1700 (12) Å

  • b = 11.051 (2) Å

  • c = 37.526 (8) Å

  • V = 2558.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 5399 measured reflections

  • 4691 independent reflections

  • 2211 reflections with I > 2σ(I)

  • Rint = 0.088

  • 3 standard reflections every 200 reflections intensity decay: 1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.183

  • S = 1.00

  • 4691 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

De­hydro­abietic acid is an important material for design and synthesis of biological compounds (Li et al., 2008; Rao et al., 2008; Sepulveda et al., 2005). As part of our ongoing project of de­hydro­abietic acid derivatives (Cui et al., 2013, Rao et al., 2009). we report herein the structure of the title compound. The structure of de­hydro­abietyl moiety in the title compound is comparable to that found for de­hydro­abietic acid and related compounds (Rao et al., 2009). There are three six-membered rings, which form planar, half-chair and chair conformations, respectively. the two cyclo­hexane rings are in trans ring junction with classic chair and half-chair conformations, respectively, Three chiral centers in the structure exhibit R–, S– and R– configurations, respectively. The C=N double bond is in E configuration.

Synthesis and crystallization top

60 mmol of De­hydro­abietyl chloride in 15 ml CH2Cl2 were added dropwise to a 60 mmol (4-meth­oxy­phenyl)­ethanone oxime and 60 mmol tri­ethyl­amine dissolved in 40 ml CH2Cl2 at a temperature 0–5°C. The reaction mixture was allowed to stand at room temperature for 2 h and then washed with water and dried over anhydrous MgSO4. The residue was purified by silica gel chromatography.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C,N,H) for all other H atoms. Methyl groups were refined in orientation AFIX 137 of program SHELXL97.

Related literature top

For the biological activity of related compounds, see: Cui et al. (2013); Li et al. (2008); Rao et al. (2008); Sepulveda et al. (2005); For the crystal structures of a related compound, see: Rao et al. (2009).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, hydrogen atoms are represented by small spheres of arbitrary radius and the displacement ellipsoids are at the 30% probability level.
(E)-1-(4-Methoxyphenyl)ethanone O-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl]oxime top
Crystal data top
C29H37NO3F(000) = 968
Mr = 447.60Dx = 1.162 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.1700 (12) Åθ = 9–13°
b = 11.051 (2) ŵ = 0.07 mm1
c = 37.526 (8) ÅT = 293 K
V = 2558.7 (9) Å3Block, white
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2211 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 25.4°, θmin = 1.1°
ω/2θ scansh = 07
Absorption correction: ψ scan
(CAD-4 Software; North et al., 1968)
k = 013
Tmin = 0.978, Tmax = 0.993l = 4545
5399 measured reflections3 standard reflections every 200 reflections
4691 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
4691 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C29H37NO3V = 2558.7 (9) Å3
Mr = 447.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1700 (12) ŵ = 0.07 mm1
b = 11.051 (2) ÅT = 293 K
c = 37.526 (8) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2211 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; North et al., 1968)
Rint = 0.088
Tmin = 0.978, Tmax = 0.9933 standard reflections every 200 reflections
5399 measured reflections intensity decay: 1%
4691 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0781 restraint
wR(F2) = 0.183H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
4691 reflectionsΔρmin = 0.17 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1892 (7)0.0800 (4)0.03582 (11)0.0798 (14)
O10.1751 (9)0.3034 (4)0.08665 (11)0.1262 (18)
C10.3329 (16)0.3936 (6)0.0959 (2)0.168 (4)
H1A0.27480.44570.11400.252*
H1B0.36800.44070.07510.252*
H1C0.46160.35490.10470.252*
O20.2587 (6)0.1742 (4)0.06048 (9)0.0806 (12)
C20.2309 (11)0.2209 (5)0.06054 (14)0.0738 (16)
O30.0806 (6)0.1739 (4)0.08121 (11)0.1088 (16)
C30.4223 (10)0.2218 (5)0.04202 (14)0.0784 (17)
H3A0.52470.28210.04600.094*
C40.4604 (9)0.1316 (5)0.01735 (13)0.0712 (16)
H4A0.59180.13060.00520.085*
C50.3105 (8)0.0432 (5)0.01018 (12)0.0590 (13)
C60.1146 (10)0.0433 (5)0.02848 (14)0.0727 (16)
H6A0.00970.01500.02380.087*
C70.0789 (10)0.1324 (5)0.05395 (14)0.0770 (16)
H7A0.05010.13230.06680.092*
C80.3520 (9)0.0520 (6)0.01648 (14)0.0731 (16)
C90.5748 (10)0.1086 (7)0.01919 (18)0.135 (3)
H9A0.57590.16690.03810.202*
H9B0.60990.14790.00290.202*
H9C0.68010.04680.02400.202*
C100.1024 (8)0.2116 (5)0.08260 (13)0.0616 (13)
C110.1842 (8)0.3063 (4)0.10914 (12)0.0548 (12)
C120.1060 (9)0.4277 (5)0.09359 (13)0.0724 (16)
H12A0.19250.44700.07280.087*
H12B0.04330.41910.08590.087*
C130.1212 (10)0.5326 (4)0.12026 (12)0.0694 (15)
H13A0.27190.54730.12620.083*
H13B0.06270.60560.10960.083*
C140.0049 (9)0.5020 (4)0.15382 (12)0.0615 (14)
H14A0.00840.56880.17040.074*
H14B0.15700.49400.14770.074*
C150.0682 (7)0.3872 (4)0.17213 (11)0.0460 (11)
C160.0614 (7)0.2829 (4)0.14438 (11)0.0501 (11)
H16A0.09130.27710.13740.060*
C170.0814 (7)0.3510 (4)0.20262 (12)0.0525 (12)
C180.1403 (8)0.2317 (5)0.20981 (12)0.0574 (13)
C190.0723 (9)0.1300 (4)0.18619 (13)0.0711 (15)
H19A0.19580.10460.17200.085*
H19B0.02920.06200.20090.085*
C200.1123 (8)0.1615 (4)0.16145 (13)0.0659 (14)
H20A0.12760.09980.14320.079*
H20B0.24700.16640.17470.079*
C210.1556 (9)0.4395 (5)0.22626 (13)0.0650 (14)
H21A0.11820.51990.22220.078*
C220.2828 (9)0.4119 (5)0.25553 (13)0.0658 (14)
H22A0.33010.47330.27060.079*
C230.3401 (9)0.2922 (5)0.26245 (13)0.0623 (13)
C240.2702 (9)0.2063 (5)0.23947 (13)0.0696 (14)
H24A0.31040.12640.24360.084*
C250.4331 (8)0.3015 (5)0.11184 (15)0.0794 (17)
H25A0.47640.22510.12170.119*
H25B0.48300.36580.12700.119*
H25C0.49500.31060.08850.119*
C260.2970 (8)0.4086 (4)0.18935 (13)0.0694 (15)
H26A0.28830.47390.20620.104*
H26B0.39960.42870.17100.104*
H26C0.34300.33630.20130.104*
C270.4765 (10)0.2590 (5)0.29540 (14)0.0794 (17)
H27A0.47530.17060.29710.095*
C280.3787 (12)0.3065 (7)0.32966 (14)0.120 (3)
H28A0.47030.28510.34940.181*
H28B0.36600.39300.32830.181*
H28C0.23770.27160.33300.181*
C290.7111 (11)0.2963 (6)0.29055 (18)0.104 (2)
H29A0.79190.27580.31160.157*
H29B0.77120.25460.27040.157*
H29C0.71870.38200.28660.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.063 (3)0.111 (4)0.065 (3)0.009 (3)0.001 (3)0.033 (3)
O10.185 (5)0.093 (3)0.101 (3)0.023 (4)0.032 (4)0.031 (3)
C10.250 (11)0.095 (5)0.158 (7)0.084 (7)0.017 (8)0.045 (5)
O20.063 (2)0.115 (3)0.064 (2)0.027 (2)0.018 (2)0.035 (2)
C20.092 (4)0.070 (4)0.059 (3)0.011 (4)0.003 (3)0.000 (3)
O30.054 (2)0.151 (4)0.121 (3)0.029 (3)0.003 (3)0.074 (3)
C30.094 (5)0.074 (4)0.067 (3)0.024 (4)0.005 (4)0.006 (3)
C40.059 (3)0.091 (4)0.063 (3)0.025 (3)0.006 (3)0.003 (3)
C50.052 (3)0.077 (4)0.048 (3)0.000 (3)0.001 (3)0.003 (2)
C60.077 (4)0.075 (4)0.066 (3)0.009 (3)0.000 (3)0.012 (3)
C70.075 (4)0.081 (4)0.075 (4)0.016 (4)0.011 (3)0.010 (3)
C80.058 (3)0.112 (5)0.049 (3)0.001 (3)0.001 (3)0.011 (3)
C90.062 (4)0.216 (9)0.127 (6)0.019 (5)0.012 (4)0.075 (6)
C100.052 (3)0.071 (3)0.062 (3)0.003 (3)0.002 (3)0.015 (3)
C110.040 (2)0.072 (3)0.053 (3)0.009 (3)0.001 (2)0.014 (3)
C120.072 (4)0.088 (4)0.058 (3)0.017 (3)0.004 (3)0.002 (3)
C130.089 (4)0.055 (3)0.065 (3)0.005 (3)0.014 (3)0.006 (3)
C140.069 (3)0.049 (3)0.067 (3)0.005 (3)0.007 (3)0.001 (2)
C150.045 (3)0.040 (2)0.053 (3)0.005 (2)0.005 (2)0.003 (2)
C160.037 (3)0.053 (3)0.060 (3)0.000 (2)0.005 (2)0.004 (2)
C170.049 (3)0.053 (3)0.055 (3)0.006 (3)0.012 (2)0.011 (2)
C180.050 (3)0.074 (3)0.049 (3)0.003 (3)0.003 (2)0.011 (2)
C190.077 (4)0.063 (3)0.073 (4)0.005 (3)0.004 (3)0.000 (3)
C200.067 (4)0.053 (3)0.077 (3)0.010 (3)0.009 (3)0.004 (3)
C210.068 (3)0.065 (3)0.062 (3)0.004 (3)0.003 (3)0.005 (3)
C220.068 (3)0.076 (3)0.054 (3)0.011 (3)0.004 (3)0.008 (3)
C230.065 (3)0.067 (3)0.055 (3)0.003 (3)0.003 (3)0.008 (3)
C240.071 (4)0.067 (3)0.070 (3)0.003 (3)0.007 (3)0.010 (3)
C250.058 (3)0.098 (4)0.083 (4)0.013 (4)0.005 (3)0.008 (3)
C260.057 (3)0.085 (4)0.066 (3)0.026 (3)0.016 (3)0.008 (3)
C270.073 (4)0.101 (4)0.064 (4)0.012 (4)0.019 (3)0.021 (3)
C280.136 (6)0.166 (7)0.059 (4)0.012 (6)0.003 (4)0.011 (4)
C290.092 (5)0.110 (5)0.111 (5)0.013 (4)0.022 (4)0.014 (4)
Geometric parameters (Å, º) top
N—C81.277 (6)C15—C171.523 (6)
N—O21.458 (5)C15—C161.555 (5)
O1—C21.382 (6)C15—C261.571 (6)
O1—C11.436 (7)C16—C201.519 (6)
C1—H1A0.9600C16—H16A0.9800
C1—H1B0.9600C17—C181.393 (6)
C1—H1C0.9600C17—C211.398 (6)
O2—C101.338 (5)C18—C241.400 (6)
C2—C31.370 (8)C18—C191.492 (6)
C2—C71.377 (7)C19—C201.510 (6)
O3—C101.204 (5)C19—H19A0.9700
C3—C41.381 (7)C19—H19B0.9700
C3—H3A0.9300C20—H20A0.9700
C4—C51.371 (6)C20—H20B0.9700
C4—H4A0.9300C21—C221.384 (6)
C5—C61.390 (7)C21—H21A0.9300
C5—C81.475 (7)C22—C231.394 (6)
C6—C71.390 (7)C22—H22A0.9300
C6—H6A0.9300C23—C241.353 (6)
C7—H7A0.9300C23—C271.540 (7)
C8—C91.514 (8)C24—H24A0.9300
C9—H9A0.9600C25—H25A0.9600
C9—H9B0.9600C25—H25B0.9600
C9—H9C0.9600C25—H25C0.9600
C10—C111.530 (6)C26—H26A0.9600
C11—C121.540 (6)C26—H26B0.9600
C11—C161.546 (6)C26—H26C0.9600
C11—C251.540 (6)C27—C291.516 (8)
C12—C131.535 (6)C27—C281.514 (8)
C12—H12A0.9700C27—H27A0.9800
C12—H12B0.9700C28—H28A0.9600
C13—C141.519 (6)C28—H28B0.9600
C13—H13A0.9700C28—H28C0.9600
C13—H13B0.9700C29—H29A0.9600
C14—C151.511 (6)C29—H29B0.9600
C14—H14A0.9700C29—H29C0.9600
C14—H14B0.9700
C8—N—O2107.6 (4)C16—C15—C26114.3 (4)
C2—O1—C1117.4 (6)C20—C16—C11114.0 (4)
O1—C1—H1A109.5C20—C16—C15111.5 (3)
O1—C1—H1B109.5C11—C16—C15115.8 (4)
H1A—C1—H1B109.5C20—C16—H16A104.7
O1—C1—H1C109.5C11—C16—H16A104.7
H1A—C1—H1C109.5C15—C16—H16A104.7
H1B—C1—H1C109.5C18—C17—C21117.0 (5)
C10—O2—N113.7 (4)C18—C17—C15123.5 (4)
C3—C2—C7120.1 (5)C21—C17—C15119.4 (4)
C3—C2—O1124.7 (6)C17—C18—C24119.6 (5)
C7—C2—O1115.2 (6)C17—C18—C19121.6 (4)
C2—C3—C4118.7 (5)C24—C18—C19118.8 (5)
C2—C3—H3A120.6C18—C19—C20113.8 (4)
C4—C3—H3A120.6C18—C19—H19A108.8
C5—C4—C3122.1 (5)C20—C19—H19A108.8
C5—C4—H4A119.0C18—C19—H19B108.8
C3—C4—H4A119.0C20—C19—H19B108.8
C4—C5—C6119.3 (5)H19A—C19—H19B107.7
C4—C5—C8121.6 (5)C19—C20—C16107.9 (4)
C6—C5—C8119.1 (5)C19—C20—H20A110.1
C7—C6—C5118.5 (5)C16—C20—H20A110.1
C7—C6—H6A120.7C19—C20—H20B110.1
C5—C6—H6A120.7C16—C20—H20B110.1
C2—C7—C6121.2 (5)H20A—C20—H20B108.4
C2—C7—H7A119.4C22—C21—C17122.3 (5)
C6—C7—H7A119.4C22—C21—H21A118.8
N—C8—C5114.9 (5)C17—C21—H21A118.8
N—C8—C9125.2 (5)C23—C22—C21120.1 (5)
C5—C8—C9119.9 (5)C23—C22—H22A120.0
C8—C9—H9A109.5C21—C22—H22A120.0
C8—C9—H9B109.5C24—C23—C22117.8 (5)
H9A—C9—H9B109.5C24—C23—C27121.3 (5)
C8—C9—H9C109.5C22—C23—C27120.9 (5)
H9A—C9—H9C109.5C23—C24—C18123.2 (5)
H9B—C9—H9C109.5C23—C24—H24A118.4
O3—C10—O2122.8 (5)C18—C24—H24A118.4
O3—C10—C11125.0 (5)C11—C25—H25A109.5
O2—C10—C11112.2 (4)C11—C25—H25B109.5
C10—C11—C12104.2 (4)H25A—C25—H25B109.5
C10—C11—C16106.3 (4)C11—C25—H25C109.5
C12—C11—C16108.5 (4)H25A—C25—H25C109.5
C10—C11—C25110.4 (4)H25B—C25—H25C109.5
C12—C11—C25111.5 (4)C15—C26—H26A109.5
C16—C11—C25115.3 (4)C15—C26—H26B109.5
C13—C12—C11113.1 (4)H26A—C26—H26B109.5
C13—C12—H12A109.0C15—C26—H26C109.5
C11—C12—H12A109.0H26A—C26—H26C109.5
C13—C12—H12B109.0H26B—C26—H26C109.5
C11—C12—H12B109.0C29—C27—C28112.9 (6)
H12A—C12—H12B107.8C29—C27—C23111.1 (5)
C14—C13—C12110.0 (4)C28—C27—C23112.4 (5)
C14—C13—H13A109.7C29—C27—H27A106.6
C12—C13—H13A109.7C28—C27—H27A106.6
C14—C13—H13B109.7C23—C27—H27A106.6
C12—C13—H13B109.7C27—C28—H28A109.5
H13A—C13—H13B108.2C27—C28—H28B109.5
C15—C14—C13114.3 (4)H28A—C28—H28B109.5
C15—C14—H14A108.7C27—C28—H28C109.5
C13—C14—H14A108.7H28A—C28—H28C109.5
C15—C14—H14B108.7H28B—C28—H28C109.5
C13—C14—H14B108.7C27—C29—H29A109.5
H14A—C14—H14B107.6C27—C29—H29B109.5
C14—C15—C17112.4 (4)H29A—C29—H29B109.5
C14—C15—C16108.0 (3)C27—C29—H29C109.5
C17—C15—C16107.0 (3)H29A—C29—H29C109.5
C14—C15—C26109.2 (4)H29B—C29—H29C109.5
C17—C15—C26106.0 (4)
C8—N—O2—C10179.7 (5)C10—C11—C16—C15163.9 (4)
C1—O1—C2—C32.5 (9)C12—C11—C16—C1552.3 (5)
C1—O1—C2—C7176.8 (6)C25—C11—C16—C1573.5 (5)
C7—C2—C3—C41.2 (9)C14—C15—C16—C20174.6 (4)
O1—C2—C3—C4178.0 (5)C17—C15—C16—C2053.4 (5)
C2—C3—C4—C51.8 (9)C26—C15—C16—C2063.6 (5)
C3—C4—C5—C60.7 (8)C14—C15—C16—C1152.7 (5)
C3—C4—C5—C8179.4 (5)C17—C15—C16—C11174.0 (4)
C4—C5—C6—C71.0 (8)C26—C15—C16—C1169.1 (5)
C8—C5—C6—C7179.0 (5)C14—C15—C17—C18140.3 (4)
C3—C2—C7—C60.4 (9)C16—C15—C17—C1821.9 (6)
O1—C2—C7—C6179.7 (5)C26—C15—C17—C18100.4 (5)
C5—C6—C7—C21.5 (9)C14—C15—C17—C2143.6 (6)
O2—N—C8—C5179.8 (4)C16—C15—C17—C21162.0 (4)
O2—N—C8—C90.2 (9)C26—C15—C17—C2175.7 (5)
C4—C5—C8—N140.2 (6)C21—C17—C18—C240.7 (6)
C6—C5—C8—N39.9 (8)C15—C17—C18—C24176.9 (4)
C4—C5—C8—C939.9 (9)C21—C17—C18—C19179.3 (4)
C6—C5—C8—C9140.1 (6)C15—C17—C18—C194.4 (7)
N—O2—C10—O32.7 (8)C17—C18—C19—C2016.9 (6)
N—O2—C10—C11177.4 (4)C24—C18—C19—C20164.4 (4)
O3—C10—C11—C1279.2 (7)C18—C19—C20—C1646.7 (5)
O2—C10—C11—C12100.7 (5)C11—C16—C20—C19158.6 (4)
O3—C10—C11—C1635.3 (8)C15—C16—C20—C1967.9 (5)
O2—C10—C11—C16144.8 (4)C18—C17—C21—C220.3 (7)
O3—C10—C11—C25161.0 (6)C15—C17—C21—C22176.7 (4)
O2—C10—C11—C2519.1 (6)C17—C21—C22—C230.4 (8)
C10—C11—C12—C13165.9 (4)C21—C22—C23—C241.0 (8)
C16—C11—C12—C1353.0 (5)C21—C22—C23—C27178.4 (5)
C25—C11—C12—C1375.0 (6)C22—C23—C24—C181.4 (8)
C11—C12—C13—C1456.2 (6)C27—C23—C24—C18178.0 (5)
C12—C13—C14—C1557.6 (6)C17—C18—C24—C231.3 (7)
C13—C14—C15—C17172.2 (4)C19—C18—C24—C23180.0 (5)
C13—C14—C15—C1654.5 (5)C24—C23—C27—C29106.9 (6)
C13—C14—C15—C2670.4 (5)C22—C23—C27—C2973.8 (7)
C10—C11—C16—C2064.7 (5)C24—C23—C27—C28125.5 (6)
C12—C11—C16—C20176.2 (4)C22—C23—C27—C2853.8 (7)
C25—C11—C16—C2058.0 (6)

Experimental details

Crystal data
Chemical formulaC29H37NO3
Mr447.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.1700 (12), 11.051 (2), 37.526 (8)
V3)2558.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 Software; North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5399, 4691, 2211
Rint0.088
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.183, 1.00
No. of reflections4691
No. of parameters298
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported financially by grants from the Natural Science Foundation of Jiangsu Province (grant No. BK2011112).

References

First citationCui, Y. J., Rao, X. P., Shang, S. B., Song, J. & Gao, Y. Q. (2013). Lett. Drug Des. Discov. 10, 102–110.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, F., He, L., Song, Z. Q., Yao, J. C., Rao, X. P. & Li, H. T. (2008). J. Pharm. Pharmacol. 60, 205–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56,1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds