organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1065-o1066

5-Chloro-3-(4-fluoro­phenyl­sulfon­yl)-2,7-di­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

Edited by J. T. Mague, Tulane University, USA (Received 5 August 2014; accepted 24 August 2014; online 30 August 2014)

In the title compound, C16H12ClFO3S, the dihedral angle between the plane of the benzo­furan ring system [r.m.s. deviation = 0.007 (1) Å] and that of the 4-fluoro­phenyl ring is 76.11 (5)°. In the crystal, mol­ecules are linked into [010] chains via two different inversion-generated pairs of C—H⋯O hydrogen bonds. The crystal structure also exhibits weak ππ inter­actions between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.820 (2) Å].

1. Related literature

For the pharmaceutical properties of compounds containing benzo­furan moieties, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]); Ono et al. (2002[Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633-642.]). For natural products with a benzo­furan ring, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the synthesis of the starting material 5-chloro-3-(4-fluoro­phenyl­sulfan­yl)-2,7-dimethyl-1-benzo­furan, see: Choi et al. (1999[Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606-608.]). For a related structure, see: Choi et al. (2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o568.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12ClFO3S

  • Mr = 338.77

  • Triclinic, [P \overline 1]

  • a = 8.4338 (3) Å

  • b = 9.9171 (3) Å

  • c = 10.1059 (3) Å

  • α = 73.988 (2)°

  • β = 66.155 (2)°

  • γ = 73.629 (2)°

  • V = 729.02 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 173 K

  • 0.47 × 0.31 × 0.15 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.939

  • 13460 measured reflections

  • 3614 independent reflections

  • 3163 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.03

  • 3614 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9C⋯O2i 0.98 2.57 3.331 (2) 135
C16—H16⋯O3ii 0.95 2.53 3.230 (2) 130
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing the benzofuran skeleton show interesting pharmacological properties such as antibacterial, antifungal, antitumor, antiviral and antimicrobial activities (Aslam et al. 2009, Galal et al., 2009, Khan et al., 2005) as well as being potential inhibitors of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These benzofuran compounds are widely occurring in nature (Akgul & Anil, 2003, Soekamto et al., 2003). As a part of our ongoing project of 3-arylsulfonyl-5-chloro-2,7-dimethyl-1-benzofuran derivatives containing a 3-methylphenylsulfonyl substituent in the 3-position (Choi et al., 2014), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is essentially planar, with a mean deviation of 0.003 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-fluorophenyl ring is 76.11 (5)°. In the crystal structure (Fig. 2), molecules are linked via pairs of C—H···O hydrogen bonds (Table 1), forming inversion dimers. The crystal packing (Fig. 2) also exhibits weak ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2i (i: -x, 1-y, 1-z) distance of 3.820 (2) Å and an interplanar distance of 3.641 (2) Å resulting in a slippage of 1.159 (2) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively),

Related literature top

For the pharmaceutical properties of compounds containing benzofuran moieties, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Khan et al. (2005); Ono et al. (2002). For natural products with a benzofuran ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 5-chloro-3-(4-fluorophenylsulfanyl)-2,7-dimethyl-1-benzofuran, see: Choi et al. (1999). For a related structure, see: Choi et al. (2014).

Experimental top

The starting material 5-chloro-3-(4-fluorophenylsulfanyl)-2,7-dimethyl-1-benzofuran was prepared by the literature method (Choi et al., 1999). 3-Chloroperoxybenzoic acid (77%, 515 mg, 2.3 mmol) was added in small portions to a stirred solution of 5-chloro-3-(4-fluorophenylsulfanyl)-2,7-dimethyl-1-benzofuran (337 mg, 1.1 mmol) in dichloromethane (35 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution (2 x 20 mL) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71% (240 mg); m.p. 468–469 K; Rf = 0.56 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (30 mg) in ethyl acetate (20 mL) at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms.The positions of methyl hydrogens were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x, - y + 1, - z + 1; (ii) - x, - y + 2, - z.]
5-Chloro-3-(4-fluorophenylsulfonyl)-2,7-dimethyl-1-benzofuran top
Crystal data top
C16H12ClFO3SZ = 2
Mr = 338.77F(000) = 348
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Melting point = 469–468 K
a = 8.4338 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9171 (3) ÅCell parameters from 5949 reflections
c = 10.1059 (3) Åθ = 2.2–28.3°
α = 73.988 (2)°µ = 0.43 mm1
β = 66.155 (2)°T = 173 K
γ = 73.629 (2)°Block, colourless
V = 729.02 (4) Å30.47 × 0.31 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3614 independent reflections
Radiation source: rotating anode3163 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.825, Tmax = 0.939l = 1313
13460 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.4675P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3614 reflectionsΔρmax = 0.34 e Å3
202 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Crystal data top
C16H12ClFO3Sγ = 73.629 (2)°
Mr = 338.77V = 729.02 (4) Å3
Triclinic, P1Z = 2
a = 8.4338 (3) ÅMo Kα radiation
b = 9.9171 (3) ŵ = 0.43 mm1
c = 10.1059 (3) ÅT = 173 K
α = 73.988 (2)°0.47 × 0.31 × 0.15 mm
β = 66.155 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3614 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3163 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.939Rint = 0.027
13460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3614 reflectionsΔρmin = 0.37 e Å3
202 parameters
Special details top

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.98-8.03 (m, 2H), 7.67 (d, J = 2.04 Hz, 1H), 7.17-7.22 (m, 2H), 7.10 (s, 1H), 2.80 (s, 3H), 2.43 (s, 3H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51698 (6)0.19310 (5)0.47396 (5)0.03701 (14)
S10.13342 (5)0.69006 (4)0.14183 (4)0.02143 (12)
F10.70966 (17)0.98587 (15)0.25209 (14)0.0518 (4)
O10.04838 (15)0.74576 (13)0.53640 (13)0.0263 (3)
O20.18910 (16)0.54497 (12)0.11860 (13)0.0272 (3)
O30.02442 (16)0.77606 (13)0.11823 (13)0.0291 (3)
C10.1165 (2)0.68330 (17)0.32016 (17)0.0215 (3)
C20.2069 (2)0.56854 (17)0.40420 (17)0.0217 (3)
C30.3177 (2)0.43625 (17)0.38227 (18)0.0235 (3)
H30.35060.40130.29430.028*
C40.3767 (2)0.35884 (18)0.49555 (19)0.0260 (3)
C50.3304 (2)0.40691 (19)0.62598 (19)0.0285 (4)
H50.37610.34920.69960.034*
C60.2188 (2)0.53740 (19)0.65043 (18)0.0267 (4)
C70.1604 (2)0.61368 (18)0.53606 (18)0.0236 (3)
C80.0241 (2)0.78571 (18)0.40404 (18)0.0240 (3)
C90.1674 (3)0.5919 (2)0.78961 (19)0.0361 (4)
H9A0.12100.69500.77370.054*
H9B0.27130.57300.81750.054*
H9C0.07640.54310.86850.054*
C100.0915 (2)0.92612 (19)0.3815 (2)0.0322 (4)
H10A0.03611.00180.37900.048*
H10B0.20590.92860.46250.048*
H10C0.10920.94110.28810.048*
C110.3084 (2)0.78021 (17)0.02639 (17)0.0224 (3)
C120.4815 (2)0.70757 (19)0.0003 (2)0.0306 (4)
H120.50620.61080.04680.037*
C130.6181 (3)0.7776 (2)0.0943 (2)0.0374 (4)
H130.73790.73010.11380.045*
C140.5764 (3)0.9174 (2)0.1594 (2)0.0339 (4)
C150.4069 (3)0.9914 (2)0.1352 (2)0.0348 (4)
H150.38341.08800.18250.042*
C160.2703 (2)0.92165 (19)0.03976 (19)0.0299 (4)
H160.15110.97060.01980.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0373 (3)0.0245 (2)0.0429 (3)0.00018 (18)0.0175 (2)0.00258 (18)
S10.0238 (2)0.0211 (2)0.01966 (19)0.00243 (15)0.00994 (15)0.00263 (14)
F10.0438 (7)0.0607 (9)0.0443 (7)0.0292 (7)0.0018 (5)0.0068 (6)
O10.0261 (6)0.0302 (6)0.0231 (6)0.0035 (5)0.0074 (5)0.0100 (5)
O20.0366 (7)0.0233 (6)0.0244 (6)0.0044 (5)0.0133 (5)0.0062 (5)
O30.0253 (6)0.0319 (7)0.0299 (6)0.0029 (5)0.0148 (5)0.0005 (5)
C10.0220 (7)0.0222 (8)0.0199 (7)0.0032 (6)0.0077 (6)0.0042 (6)
C20.0229 (7)0.0233 (8)0.0186 (7)0.0066 (6)0.0072 (6)0.0015 (6)
C30.0250 (8)0.0225 (8)0.0216 (8)0.0042 (6)0.0082 (6)0.0025 (6)
C40.0252 (8)0.0218 (8)0.0285 (8)0.0057 (6)0.0106 (6)0.0022 (6)
C50.0307 (9)0.0319 (9)0.0234 (8)0.0122 (7)0.0135 (7)0.0063 (7)
C60.0280 (8)0.0350 (9)0.0190 (7)0.0138 (7)0.0076 (6)0.0010 (6)
C70.0221 (8)0.0264 (8)0.0217 (8)0.0063 (6)0.0053 (6)0.0056 (6)
C80.0224 (8)0.0262 (8)0.0245 (8)0.0045 (6)0.0086 (6)0.0062 (6)
C90.0388 (10)0.0529 (12)0.0211 (8)0.0162 (9)0.0100 (7)0.0075 (8)
C100.0290 (9)0.0281 (9)0.0395 (10)0.0031 (7)0.0131 (8)0.0134 (8)
C110.0243 (8)0.0240 (8)0.0188 (7)0.0036 (6)0.0079 (6)0.0042 (6)
C120.0262 (9)0.0245 (9)0.0385 (10)0.0002 (7)0.0105 (7)0.0084 (7)
C130.0257 (9)0.0379 (11)0.0455 (11)0.0041 (8)0.0049 (8)0.0168 (9)
C140.0347 (10)0.0410 (11)0.0260 (9)0.0166 (8)0.0031 (7)0.0084 (8)
C150.0421 (11)0.0321 (10)0.0291 (9)0.0124 (8)0.0145 (8)0.0045 (7)
C160.0299 (9)0.0277 (9)0.0290 (9)0.0034 (7)0.0131 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cl1—C41.7440 (18)C6—C91.501 (2)
S1—O31.4356 (12)C8—C101.477 (2)
S1—O21.4361 (12)C9—H9A0.9800
S1—C11.7332 (16)C9—H9B0.9800
S1—C111.7648 (16)C9—H9C0.9800
F1—C141.353 (2)C10—H10A0.9800
O1—C81.368 (2)C10—H10B0.9800
O1—C71.382 (2)C10—H10C0.9800
C1—C81.361 (2)C11—C161.386 (2)
C1—C21.448 (2)C11—C121.386 (2)
C2—C71.392 (2)C12—C131.385 (3)
C2—C31.395 (2)C12—H120.9500
C3—C41.382 (2)C13—C141.374 (3)
C3—H30.9500C13—H130.9500
C4—C51.394 (3)C14—C151.366 (3)
C5—C61.387 (3)C15—C161.385 (2)
C5—H50.9500C15—H150.9500
C6—C71.385 (2)C16—H160.9500
O3—S1—O2119.75 (8)C6—C9—H9A109.5
O3—S1—C1109.59 (8)C6—C9—H9B109.5
O2—S1—C1106.33 (7)H9A—C9—H9B109.5
O3—S1—C11107.27 (8)C6—C9—H9C109.5
O2—S1—C11107.36 (8)H9A—C9—H9C109.5
C1—S1—C11105.71 (8)H9B—C9—H9C109.5
C8—O1—C7107.05 (12)C8—C10—H10A109.5
C8—C1—C2107.60 (14)C8—C10—H10B109.5
C8—C1—S1126.93 (13)H10A—C10—H10B109.5
C2—C1—S1125.40 (12)C8—C10—H10C109.5
C7—C2—C3119.54 (15)H10A—C10—H10C109.5
C7—C2—C1104.59 (14)H10B—C10—H10C109.5
C3—C2—C1135.87 (15)C16—C11—C12121.04 (16)
C4—C3—C2116.27 (15)C16—C11—S1119.36 (13)
C4—C3—H3121.9C12—C11—S1119.58 (13)
C2—C3—H3121.9C13—C12—C11119.27 (17)
C3—C4—C5123.25 (16)C13—C12—H12120.4
C3—C4—Cl1118.38 (14)C11—C12—H12120.4
C5—C4—Cl1118.37 (13)C14—C13—C12118.39 (18)
C6—C5—C4121.29 (16)C14—C13—H13120.8
C6—C5—H5119.4C12—C13—H13120.8
C4—C5—H5119.4F1—C14—C15118.07 (18)
C7—C6—C5114.81 (15)F1—C14—C13118.47 (18)
C7—C6—C9122.84 (17)C15—C14—C13123.45 (17)
C5—C6—C9122.34 (16)C14—C15—C16118.13 (18)
O1—C7—C6124.81 (15)C14—C15—H15120.9
O1—C7—C2110.37 (14)C16—C15—H15120.9
C6—C7—C2124.83 (16)C15—C16—C11119.71 (17)
C1—C8—O1110.39 (15)C15—C16—H16120.1
C1—C8—C10133.98 (16)C11—C16—H16120.1
O1—C8—C10115.63 (14)
O3—S1—C1—C829.69 (17)C1—C2—C7—O10.51 (17)
O2—S1—C1—C8160.47 (15)C3—C2—C7—C61.2 (2)
C11—S1—C1—C885.62 (16)C1—C2—C7—C6179.20 (15)
O3—S1—C1—C2153.51 (13)C2—C1—C8—O10.14 (18)
O2—S1—C1—C222.72 (16)S1—C1—C8—O1177.13 (11)
C11—S1—C1—C291.19 (15)C2—C1—C8—C10179.67 (18)
C8—C1—C2—C70.40 (18)S1—C1—C8—C102.4 (3)
S1—C1—C2—C7176.93 (12)C7—O1—C8—C10.18 (18)
C8—C1—C2—C3179.10 (17)C7—O1—C8—C10179.45 (14)
S1—C1—C2—C33.6 (3)O3—S1—C11—C1613.38 (16)
C7—C2—C3—C41.0 (2)O2—S1—C11—C16143.30 (14)
C1—C2—C3—C4179.57 (17)C1—S1—C11—C16103.50 (15)
C2—C3—C4—C50.2 (2)O3—S1—C11—C12164.96 (14)
C2—C3—C4—Cl1179.55 (12)O2—S1—C11—C1235.04 (16)
C3—C4—C5—C60.6 (3)C1—S1—C11—C1278.15 (15)
Cl1—C4—C5—C6179.72 (13)C16—C11—C12—C130.5 (3)
C4—C5—C6—C70.4 (2)S1—C11—C12—C13177.85 (14)
C4—C5—C6—C9179.76 (16)C11—C12—C13—C140.2 (3)
C8—O1—C7—C6179.28 (15)C12—C13—C14—F1179.88 (17)
C8—O1—C7—C20.44 (17)C12—C13—C14—C150.4 (3)
C5—C6—C7—O1179.86 (14)F1—C14—C15—C16179.67 (17)
C9—C6—C7—O10.8 (3)C13—C14—C15—C160.1 (3)
C5—C6—C7—C20.5 (2)C14—C15—C16—C110.7 (3)
C9—C6—C7—C2178.89 (16)C12—C11—C16—C150.9 (3)
C3—C2—C7—O1179.08 (13)S1—C11—C16—C15177.40 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.982.573.331 (2)135
C16—H16···O3ii0.952.533.230 (2)130
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.982.573.331 (2)135
C16—H16···O3ii0.952.533.230 (2)130
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z.
 

Acknowledgements

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o568.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc. 43, 606–608.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOno, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1065-o1066
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds