metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m328-m329

Crystal structure of di-μ-benzato-κ4O:O′-bis­­[aqua­(benzato-κO)(benzato-κ2O,O′)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)europium(III)]–benzoic acid (1/2)

aUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688-0002, USA
*Correspondence e-mail: rsykora@southalabama.edu

Edited by T. J. Prior, University of Hull, England (Received 29 July 2014; accepted 7 August 2014; online 13 August 2014)

The title compound, [Eu2(C7H5O2)6(C15H11N3)2(H2O)2]·2C7H6O2, is a co-crystalline compound containing a dinuclear EuIII coordination complex with inversion symmetry co-crystallized with benzoic acid in a 1:2 ratio. The Eu3+ ions within the dimer are nine-coordinate, containing one tridentate terpyridine, one water, and four benzoate ions, two of which bridge the Eu3+ ions. Of the four benzoate ligands coordinating to each Eu3+ position, three distinct coordination modes [monodentate, bidentate–chelating, and bidentate–bridging (twice)] are observed. Within the crystal, there are two additional uncoordinating benzoic acid mol­ecules per dinuclear complex. Within the dimer, the water bound to each Eu3+ ion participates in intra­molecular hydrogen bonding with a coordinating benzoate. Additionally, the carb­oxy­lic acid group on the benzoic acid participates in inter­molecular hydrogen bonding with a benzoate ligand bound to the dimer complex.

1. Related literature

Coordination of lanthanide ions by organic ligands has many uses including solvent extractions from nuclear waste and light emitting diodes in electronics (Dul et al., 2013[Dul, M.-C., Bourgeois, D., Maynadie, J. & Meyer, D. (2013). Tetrahedron Lett. 54, 6271-6274.]; Romero et al., 2012[Romero, V. H., De la Rosa, E., Salas, P. & Velazquez-Salazar, J. J. (2012). J. Solid State Chem. 196, 243-248.]). Organic ligands are also capable of increasing the intensity of lanthanide emissions (Romero et al., 2012[Romero, V. H., De la Rosa, E., Salas, P. & Velazquez-Salazar, J. J. (2012). J. Solid State Chem. 196, 243-248.]). The title compound, and similar derivatives, are of inter­est because of the effect these organic ligands can have on increasing the emission intensity from lanthanide ions in white-light-emitting phosphors. For lanthanide–terpyridine complex chemistry, see: Frost et al. (1969[Frost, G. H., Hart, F. A., Heath, C. & Hursthouse, M. B. (1969). J. Chem. Soc. D, 23, 1421-1422.]). For synthesis, structural, and spectroscopic properties of related lanthanide complexes containing both terpyridine and bridging benzoate ligands, see: Messimeri et al. (2007[Messimeri, A., Papadimitriou, C., Raptopoulou, C. P., Escuer, A., Perlepes, S. P. & Boudalis, A. K. (2007). Inorg. Chem. Commun. 10, 800-804.]); Fiedler et al. (2007[Fiedler, T., Hilder, M., Junk, P. C., Kynast, U. H., Lezhnina, M. M. & Warzala, M. (2007). Eur. J. Inorg, Chem. pp. 291-301.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Eu2(C7H5O2)6(C15H11N3)2(H2O)2]·2C7H6O2

  • Mr = 1777.38

  • Triclinic, [P \overline 1]

  • a = 11.8435 (5) Å

  • b = 13.9470 (7) Å

  • c = 14.0090 (7) Å

  • α = 102.568 (4)°

  • β = 111.400 (5)°

  • γ = 108.583 (5)°

  • V = 1890.40 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 180 K

  • 0.05 × 0.04 × 0.03 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.988, Tmax = 1.000

  • 12682 measured reflections

  • 6921 independent reflections

  • 5919 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.070

  • S = 1.03

  • 6921 reflections

  • 507 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O8i 0.82 1.76 2.582 (4) 178
O5—H5A⋯O8 0.87 1.98 2.796 (4) 155
O5—H5B⋯O4ii 0.87 1.95 2.768 (4) 155
Symmetry codes: (i) x, y-1, z-1; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Methanol solutions consisting of 0.1 M EuCl3 (1mL), 0.1 M benzoic acid (1 mL), and 0.1 M 2,2':6',2"-terpyridine (1 mL) were mixed in a test tube. The resultant solution was left to evaporate under normal atmospheric conditions which resulted in the formation of colorless crystals. The single crystals were gathered and isolated for studies.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions using the hadd command in Olex2 (Dolomanov et al., 2009) and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for ring hydrogens, with Uiso(H) = 1.5Ueq(O) and O—H distances of 0.875 Å for water hydrogens, and with Uiso(H) = 1.5Ueq(O) and an O—H distance of 0.82 Å for the carb­oxy­lic acid hydrogen. Free refinement of O—H hydrogen atoms resulted in reasonable geometries, but unexpectedly short O—H bond distances.

Related literature top

Coordination of lanthanide ions by organic ligands has many uses including solvent extractions from nuclear waste and light emitting diodes in electronics (Dul et al., 2013; Romero et al., 2012). Organic ligands are also capable of increasing the intensity of lanthanide emissions (Romero et al., 2012). The title compound, and similar derivatives, are of interest because of the effect these organic ligands can have on increasing the emission intensity from lanthanide ions in white-light-emitting phosphors. For lanthanide–terpyridine complex chemistry, see: Frost et al. (1969). For synthesis, structural, and spectroscopic properties of related lanthanide complexes containing both terpyridine and bridging benzoate ligands, see: Messimeri et al. (2007); Fiedler et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A ball-and-stick representaion of the molecular structure of I. Hydrogen atoms on the aromatic rings have been removed for clarity.
Di-µ-benzato-κ4O:O'-bis[aqua(benzato-κO)(benzato-κ2O,O')(2,2':6',2''-terpyridine-κ3N,N',N'')europium(III)]–benzoic acid (1/2) top
Crystal data top
[Eu2(C7H5O2)6(C15H11N3)2(H2O)2]·2C7H6O2Z = 1
Mr = 1777.38F(000) = 896
Triclinic, P1Dx = 1.561 Mg m3
a = 11.8435 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.9470 (7) ÅCell parameters from 5349 reflections
c = 14.0090 (7) Åθ = 3.3–26.4°
α = 102.568 (4)°µ = 1.72 mm1
β = 111.400 (5)°T = 180 K
γ = 108.583 (5)°Prism, clear colourless
V = 1890.40 (16) Å30.05 × 0.04 × 0.03 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
6921 independent reflections
Radiation source: Enhance (Mo) X-ray Source5919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0514 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1616
Tmin = 0.988, Tmax = 1.000l = 1615
12682 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0205P)2]
where P = (Fo2 + 2Fc2)/3
6921 reflections(Δ/σ)max = 0.001
507 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Eu2(C7H5O2)6(C15H11N3)2(H2O)2]·2C7H6O2γ = 108.583 (5)°
Mr = 1777.38V = 1890.40 (16) Å3
Triclinic, P1Z = 1
a = 11.8435 (5) ÅMo Kα radiation
b = 13.9470 (7) ŵ = 1.72 mm1
c = 14.0090 (7) ÅT = 180 K
α = 102.568 (4)°0.05 × 0.04 × 0.03 mm
β = 111.400 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
6921 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
5919 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 1.000Rint = 0.037
12682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
6921 reflectionsΔρmin = 0.53 e Å3
507 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.60725 (2)0.901818 (18)0.607785 (17)0.01686 (7)
N30.4478 (3)0.7011 (3)0.5632 (3)0.0206 (8)
O30.6498 (3)0.7737 (2)0.4829 (2)0.0231 (7)
O90.5811 (3)0.9085 (2)0.7688 (2)0.0237 (7)
O40.4730 (3)0.8045 (2)0.4030 (2)0.0231 (7)
O10.7127 (3)1.0054 (2)0.5254 (2)0.0289 (7)
O80.7071 (3)1.0699 (3)0.9073 (2)0.0356 (8)
N10.8631 (3)0.9976 (3)0.7433 (3)0.0241 (8)
O70.8924 (4)0.3302 (3)0.0132 (3)0.0461 (9)
N20.7144 (3)0.7916 (3)0.7133 (2)0.0186 (8)
C60.8428 (4)0.8412 (4)0.7946 (3)0.0218 (10)
C250.3769 (4)0.6313 (3)0.2020 (3)0.0246 (10)
H250.31640.65700.21070.030*
C170.7978 (4)1.1095 (3)0.4350 (3)0.0211 (10)
C240.5068 (4)0.6743 (3)0.2884 (3)0.0205 (9)
C230.5477 (4)0.7567 (3)0.3978 (3)0.0187 (9)
C160.6934 (4)1.0641 (3)0.4701 (3)0.0196 (9)
C100.6377 (4)0.6881 (4)0.6939 (3)0.0212 (10)
C10.9367 (4)1.0985 (4)0.7559 (4)0.0330 (11)
H10.89601.12770.70750.040*
C310.9065 (4)0.4374 (4)0.1515 (3)0.0254 (10)
C380.5944 (4)0.9156 (3)0.9417 (3)0.0202 (9)
C430.5257 (4)0.8029 (4)0.9017 (3)0.0255 (10)
H430.49750.76190.82850.031*
C370.6298 (4)0.9697 (4)0.8685 (3)0.0237 (10)
C290.5979 (4)0.6380 (4)0.2737 (3)0.0267 (11)
H290.68570.66730.33050.032*
C31.1281 (5)1.1201 (4)0.9069 (4)0.0408 (13)
H31.21661.16160.96280.049*
C420.4985 (4)0.7505 (4)0.9696 (4)0.0330 (11)
H420.45260.67470.94200.040*
C150.3195 (4)0.6563 (4)0.4855 (4)0.0293 (11)
H150.28640.70140.45680.035*
C110.4957 (4)0.6357 (3)0.6054 (3)0.0219 (10)
C390.6353 (5)0.9755 (4)1.0512 (3)0.0304 (11)
H390.68211.05121.07950.036*
C410.5395 (5)0.8111 (4)1.0781 (4)0.0386 (13)
H410.52170.77611.12390.046*
C260.3368 (5)0.5508 (4)0.1032 (3)0.0300 (11)
H260.24930.52130.04590.036*
C400.6065 (5)0.9228 (4)1.1184 (4)0.0402 (13)
H400.63290.96341.19130.048*
C41.0557 (5)1.0153 (4)0.8952 (4)0.0350 (12)
H41.09550.98500.94270.042*
C130.2820 (5)0.4796 (4)0.4873 (4)0.0411 (13)
H130.22680.40540.46220.049*
C21.0678 (5)1.1624 (4)0.8350 (4)0.0378 (12)
H21.11471.23240.83980.045*
C70.8972 (5)0.7876 (4)0.8584 (4)0.0298 (11)
H70.98610.82320.91450.036*
C50.9242 (4)0.9556 (4)0.8130 (3)0.0213 (10)
C140.2330 (5)0.5469 (4)0.4451 (4)0.0330 (11)
H140.14410.51920.39080.040*
C120.4144 (5)0.5249 (4)0.5675 (4)0.0320 (11)
H120.44950.48080.59650.038*
C280.5573 (5)0.5576 (4)0.1736 (4)0.0376 (13)
H280.61800.53320.16320.045*
C320.8532 (5)0.4409 (4)0.2239 (4)0.0373 (12)
H320.79120.37680.21920.045*
C180.9132 (5)1.0938 (4)0.4702 (4)0.0382 (13)
H180.92551.05360.51480.046*
C90.6876 (5)0.6307 (4)0.7557 (4)0.0314 (11)
H90.63290.55900.74140.038*
C360.9973 (5)0.5325 (4)0.1575 (4)0.0413 (13)
H361.03200.53000.10770.050*
C80.8181 (5)0.6823 (4)0.8371 (4)0.0351 (12)
H80.85330.64540.87840.042*
C270.4275 (5)0.5144 (4)0.0903 (4)0.0370 (12)
H270.40040.45970.02400.044*
C351.0371 (6)0.6320 (5)0.2375 (5)0.0530 (15)
H351.09950.69610.24250.064*
C220.7788 (5)1.1673 (4)0.3664 (4)0.0374 (12)
H220.70111.17800.34160.045*
C300.8641 (4)0.3329 (4)0.0611 (4)0.0272 (11)
C330.8922 (5)0.5406 (5)0.3042 (4)0.0482 (15)
H330.85700.54340.35360.058*
C210.8756 (7)1.2088 (4)0.3351 (5)0.0632 (19)
H210.86271.24760.28910.076*
C191.0107 (5)1.1375 (5)0.4396 (5)0.0595 (18)
H191.08971.12880.46540.071*
C200.9896 (7)1.1939 (5)0.3702 (6)0.072 (2)
H201.05341.22180.34760.087*
C340.9832 (6)0.6347 (5)0.3095 (5)0.0561 (17)
H341.00880.70140.36260.067*
O60.7974 (3)0.2460 (2)0.0747 (2)0.0333 (8)
H60.76970.19110.02070.050*
O50.6709 (3)1.0977 (2)0.7081 (2)0.0263 (7)
H5A0.68541.10970.77640.040*
H5B0.60611.11480.67540.040*
O20.5972 (3)1.0882 (2)0.4455 (2)0.0302 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01700 (12)0.01815 (12)0.01788 (12)0.00895 (9)0.00798 (10)0.00955 (9)
N30.021 (2)0.019 (2)0.0224 (19)0.0092 (18)0.0100 (18)0.0103 (16)
O30.0210 (17)0.0307 (19)0.0190 (15)0.0155 (15)0.0060 (14)0.0113 (14)
O90.0325 (19)0.0246 (18)0.0174 (15)0.0147 (16)0.0128 (15)0.0088 (14)
O40.0252 (17)0.0274 (18)0.0242 (16)0.0180 (15)0.0124 (15)0.0120 (14)
O10.0322 (19)0.032 (2)0.0327 (18)0.0157 (17)0.0195 (16)0.0200 (16)
O80.050 (2)0.021 (2)0.0271 (18)0.0048 (18)0.0208 (18)0.0072 (15)
N10.019 (2)0.021 (2)0.028 (2)0.0067 (18)0.0062 (18)0.0122 (17)
O70.063 (3)0.040 (2)0.040 (2)0.016 (2)0.032 (2)0.0177 (18)
N20.020 (2)0.022 (2)0.0185 (19)0.0127 (18)0.0107 (18)0.0089 (16)
C60.024 (3)0.028 (3)0.021 (2)0.016 (2)0.012 (2)0.013 (2)
C250.032 (3)0.024 (3)0.028 (2)0.015 (2)0.017 (2)0.017 (2)
C170.028 (3)0.019 (2)0.022 (2)0.010 (2)0.017 (2)0.0066 (19)
C240.026 (3)0.019 (2)0.021 (2)0.010 (2)0.012 (2)0.013 (2)
C230.023 (2)0.018 (2)0.020 (2)0.007 (2)0.013 (2)0.0112 (19)
C160.018 (2)0.017 (2)0.016 (2)0.006 (2)0.005 (2)0.0009 (19)
C100.025 (3)0.024 (3)0.024 (2)0.014 (2)0.016 (2)0.012 (2)
C10.023 (3)0.027 (3)0.044 (3)0.011 (2)0.007 (2)0.021 (2)
C310.023 (3)0.024 (3)0.022 (2)0.011 (2)0.002 (2)0.010 (2)
C380.023 (3)0.023 (3)0.020 (2)0.013 (2)0.011 (2)0.011 (2)
C430.024 (3)0.029 (3)0.020 (2)0.012 (2)0.008 (2)0.007 (2)
C370.027 (3)0.024 (3)0.027 (3)0.017 (2)0.014 (2)0.012 (2)
C290.029 (3)0.033 (3)0.021 (2)0.016 (2)0.014 (2)0.011 (2)
C30.018 (3)0.038 (3)0.042 (3)0.004 (3)0.000 (2)0.011 (3)
C420.027 (3)0.028 (3)0.037 (3)0.006 (2)0.010 (2)0.016 (2)
C150.027 (3)0.029 (3)0.033 (3)0.013 (2)0.012 (2)0.014 (2)
C110.028 (3)0.022 (3)0.022 (2)0.012 (2)0.016 (2)0.011 (2)
C390.043 (3)0.021 (3)0.026 (3)0.012 (2)0.017 (2)0.008 (2)
C410.047 (3)0.046 (4)0.029 (3)0.018 (3)0.022 (3)0.023 (3)
C260.032 (3)0.024 (3)0.021 (2)0.006 (2)0.005 (2)0.008 (2)
C400.058 (4)0.039 (4)0.022 (3)0.017 (3)0.020 (3)0.013 (2)
C40.024 (3)0.038 (3)0.037 (3)0.011 (3)0.005 (2)0.023 (3)
C130.043 (3)0.026 (3)0.045 (3)0.004 (3)0.018 (3)0.017 (3)
C20.027 (3)0.033 (3)0.045 (3)0.011 (3)0.007 (3)0.020 (3)
C70.025 (3)0.031 (3)0.034 (3)0.013 (2)0.011 (2)0.018 (2)
C50.020 (2)0.027 (3)0.022 (2)0.014 (2)0.012 (2)0.012 (2)
C140.023 (3)0.029 (3)0.034 (3)0.005 (2)0.007 (2)0.010 (2)
C120.033 (3)0.023 (3)0.034 (3)0.010 (2)0.010 (3)0.013 (2)
C280.055 (4)0.047 (3)0.035 (3)0.035 (3)0.031 (3)0.019 (3)
C320.030 (3)0.035 (3)0.033 (3)0.015 (3)0.005 (3)0.006 (2)
C180.030 (3)0.038 (3)0.054 (3)0.017 (3)0.026 (3)0.015 (3)
C90.034 (3)0.025 (3)0.039 (3)0.014 (2)0.016 (3)0.018 (2)
C360.040 (3)0.034 (3)0.042 (3)0.015 (3)0.010 (3)0.019 (3)
C80.035 (3)0.038 (3)0.039 (3)0.023 (3)0.012 (3)0.025 (3)
C270.053 (4)0.036 (3)0.022 (3)0.021 (3)0.019 (3)0.008 (2)
C350.046 (4)0.032 (4)0.061 (4)0.017 (3)0.005 (3)0.019 (3)
C220.056 (4)0.026 (3)0.037 (3)0.016 (3)0.030 (3)0.013 (2)
C300.026 (3)0.022 (3)0.030 (3)0.012 (2)0.007 (2)0.011 (2)
C330.042 (4)0.049 (4)0.038 (3)0.029 (3)0.005 (3)0.000 (3)
C210.119 (6)0.035 (4)0.060 (4)0.024 (4)0.071 (5)0.025 (3)
C190.037 (4)0.056 (4)0.077 (4)0.008 (3)0.042 (4)0.001 (4)
C200.093 (5)0.032 (4)0.095 (5)0.004 (4)0.086 (5)0.003 (3)
C340.046 (4)0.030 (4)0.053 (4)0.022 (3)0.007 (3)0.007 (3)
O60.041 (2)0.0217 (19)0.0297 (18)0.0075 (17)0.0176 (18)0.0054 (15)
O50.0337 (19)0.0275 (19)0.0233 (16)0.0183 (16)0.0118 (16)0.0143 (14)
O20.0243 (18)0.036 (2)0.0354 (18)0.0183 (17)0.0139 (16)0.0135 (16)
Geometric parameters (Å, º) top
Eu1—N32.608 (3)C42—C411.378 (6)
Eu1—O32.523 (2)C15—H150.9300
Eu1—O92.372 (2)C15—C141.379 (6)
Eu1—O42.491 (3)C11—C121.386 (6)
Eu1—O12.368 (3)C39—H390.9300
Eu1—N12.587 (3)C39—C401.385 (6)
Eu1—N22.650 (3)C41—H410.9300
Eu1—C232.869 (4)C41—C401.371 (7)
Eu1—O52.500 (3)C26—H260.9300
Eu1—O2i2.320 (3)C26—C271.376 (6)
N3—C151.333 (5)C40—H400.9300
N3—C111.349 (5)C4—H40.9300
O3—C231.258 (4)C4—C51.376 (6)
O9—C371.262 (5)C13—H130.9300
O4—C231.278 (4)C13—C141.381 (6)
O1—C161.260 (5)C13—C121.376 (6)
O8—C371.256 (5)C2—H20.9300
N1—C11.330 (5)C7—H70.9300
N1—C51.350 (5)C7—C81.360 (6)
O7—C301.201 (5)C14—H140.9300
N2—C61.346 (5)C12—H120.9300
N2—C101.340 (5)C28—H280.9300
C6—C71.397 (5)C28—C271.373 (6)
C6—C51.484 (6)C32—H320.9300
C25—H250.9300C32—C331.394 (6)
C25—C241.389 (5)C18—H180.9300
C25—C261.381 (5)C18—C191.384 (7)
C17—C161.500 (5)C9—H90.9300
C17—C181.380 (5)C9—C81.361 (6)
C17—C221.385 (6)C36—H360.9300
C24—C231.497 (5)C36—C351.387 (7)
C24—C291.390 (5)C8—H80.9300
C16—O21.241 (4)C27—H270.9300
C10—C111.484 (6)C35—H350.9300
C10—C91.405 (5)C35—C341.376 (7)
C1—H10.9300C22—H220.9300
C1—C21.366 (6)C22—C211.377 (7)
C31—C321.376 (6)C30—O61.316 (5)
C31—C361.378 (6)C33—H330.9300
C31—C301.499 (6)C33—C341.373 (8)
C38—C431.384 (6)C21—H210.9300
C38—C371.498 (5)C21—C201.358 (8)
C38—C391.389 (5)C19—H190.9300
C43—H430.9300C19—C201.381 (8)
C43—C421.384 (6)C20—H200.9300
C29—H290.9300C34—H340.9300
C29—C281.390 (6)O6—H60.8200
C3—H30.9300O5—H5A0.8741
C3—C41.375 (6)O5—H5B0.8737
C3—C21.369 (6)O2—Eu1i2.319 (3)
C42—H420.9300
N3—Eu1—N262.51 (10)C24—C29—C28119.7 (4)
N3—Eu1—C2368.56 (10)C28—C29—H29120.2
O3—Eu1—N371.20 (9)C4—C3—H3120.5
O3—Eu1—N188.58 (9)C2—C3—H3120.5
O3—Eu1—N269.88 (8)C2—C3—C4119.0 (5)
O3—Eu1—C2325.99 (9)C43—C42—H42120.1
O9—Eu1—N375.36 (10)C41—C42—C43119.8 (5)
O9—Eu1—O3134.03 (9)C41—C42—H42120.1
O9—Eu1—O4139.35 (10)N3—C15—H15118.1
O9—Eu1—N184.98 (10)N3—C15—C14123.9 (4)
O9—Eu1—N267.02 (8)C14—C15—H15118.1
O9—Eu1—C23143.66 (11)N3—C11—C10117.0 (4)
O9—Eu1—O574.26 (9)N3—C11—C12120.9 (4)
O4—Eu1—N371.24 (10)C12—C11—C10122.1 (4)
O4—Eu1—O352.37 (8)C38—C39—H39119.9
O4—Eu1—N1133.36 (9)C40—C39—C38120.2 (4)
O4—Eu1—N2114.51 (9)C40—C39—H39119.9
O4—Eu1—C2326.39 (9)C42—C41—H41120.0
O4—Eu1—O5124.26 (9)C40—C41—C42120.0 (4)
O1—Eu1—N3139.77 (10)C40—C41—H41120.0
O1—Eu1—O373.91 (9)C25—C26—H26120.3
O1—Eu1—O9144.85 (10)C27—C26—C25119.4 (4)
O1—Eu1—O471.87 (10)C27—C26—H26120.3
O1—Eu1—N173.44 (10)C39—C40—H40119.8
O1—Eu1—N2121.78 (9)C41—C40—C39120.4 (4)
O1—Eu1—C2371.28 (10)C41—C40—H40119.8
O1—Eu1—O572.78 (9)C3—C4—H4120.1
N1—Eu1—N3124.32 (10)C3—C4—C5119.8 (4)
N1—Eu1—N261.84 (10)C5—C4—H4120.1
N1—Eu1—C23111.67 (11)C14—C13—H13120.8
N2—Eu1—C2391.88 (10)C12—C13—H13120.8
O5—Eu1—N3143.86 (9)C12—C13—C14118.4 (5)
O5—Eu1—O3144.93 (9)C1—C2—C3117.9 (5)
O5—Eu1—N171.70 (10)C1—C2—H2121.0
O5—Eu1—N2120.54 (9)C3—C2—H2121.0
O5—Eu1—C23140.78 (10)C6—C7—H7120.6
O2i—Eu1—N379.81 (10)C8—C7—C6118.8 (4)
O2i—Eu1—O3123.25 (9)C8—C7—H7120.6
O2i—Eu1—O979.32 (9)N1—C5—C6116.4 (4)
O2i—Eu1—O472.62 (9)N1—C5—C4121.6 (4)
O2i—Eu1—O1103.81 (10)C4—C5—C6122.0 (4)
O2i—Eu1—N1146.64 (10)C15—C14—C13118.2 (4)
O2i—Eu1—N2134.08 (10)C15—C14—H14120.9
O2i—Eu1—C2398.09 (11)C13—C14—H14120.9
O2i—Eu1—O575.75 (10)C11—C12—H12119.8
C15—N3—Eu1119.7 (3)C13—C12—C11120.5 (4)
C15—N3—C11118.1 (4)C13—C12—H12119.8
C11—N3—Eu1121.6 (3)C29—C28—H28120.1
C23—O3—Eu192.5 (2)C27—C28—C29119.9 (4)
C37—O9—Eu1141.9 (3)C27—C28—H28120.1
C23—O4—Eu193.6 (2)C31—C32—H32120.0
C16—O1—Eu1139.7 (3)C31—C32—C33120.0 (5)
C1—N1—Eu1119.5 (3)C33—C32—H32120.0
C1—N1—C5117.1 (4)C17—C18—H18119.7
C5—N1—Eu1122.9 (3)C17—C18—C19120.5 (5)
C6—N2—Eu1120.8 (3)C19—C18—H18119.7
C10—N2—Eu1120.3 (3)C10—C9—H9120.8
C10—N2—C6118.6 (3)C8—C9—C10118.4 (4)
N2—C6—C7121.8 (4)C8—C9—H9120.8
N2—C6—C5116.7 (3)C31—C36—H36119.9
C7—C6—C5121.5 (4)C31—C36—C35120.3 (5)
C24—C25—H25119.7C35—C36—H36119.9
C26—C25—H25119.7C7—C8—C9120.5 (4)
C26—C25—C24120.6 (4)C7—C8—H8119.7
C18—C17—C16120.5 (4)C9—C8—H8119.7
C18—C17—C22119.3 (4)C26—C27—H27119.5
C22—C17—C16120.2 (4)C28—C27—C26121.0 (4)
C25—C24—C23120.6 (3)C28—C27—H27119.5
C25—C24—C29119.4 (4)C36—C35—H35120.4
C29—C24—C23120.0 (4)C34—C35—C36119.2 (6)
O3—C23—Eu161.47 (19)C34—C35—H35120.4
O3—C23—O4121.5 (3)C17—C22—H22120.2
O3—C23—C24120.0 (3)C21—C22—C17119.5 (5)
O4—C23—Eu160.06 (19)C21—C22—H22120.2
O4—C23—C24118.4 (4)O7—C30—C31122.9 (4)
C24—C23—Eu1175.2 (3)O7—C30—O6124.5 (4)
O1—C16—C17116.5 (3)O6—C30—C31112.6 (4)
O2—C16—O1124.8 (4)C32—C33—H33120.4
O2—C16—C17118.7 (4)C34—C33—C32119.3 (5)
N2—C10—C11117.7 (3)C34—C33—H33120.4
N2—C10—C9121.9 (4)C22—C21—H21119.4
C9—C10—C11120.4 (4)C20—C21—C22121.2 (5)
N1—C1—H1117.7C20—C21—H21119.4
N1—C1—C2124.7 (4)C18—C19—H19120.3
C2—C1—H1117.7C20—C19—C18119.4 (5)
C32—C31—C36120.0 (4)C20—C19—H19120.3
C32—C31—C30122.1 (4)C21—C20—C19120.0 (5)
C36—C31—C30117.8 (4)C21—C20—H20120.0
C43—C38—C37119.6 (4)C19—C20—H20120.0
C43—C38—C39118.8 (4)C35—C34—H34119.4
C39—C38—C37121.5 (4)C33—C34—C35121.1 (5)
C38—C43—H43119.6C33—C34—H34119.4
C38—C43—C42120.8 (4)C30—O6—H6109.5
C42—C43—H43119.6Eu1—O5—H5A110.7
O9—C37—C38116.3 (4)Eu1—O5—H5B110.3
O8—C37—O9123.1 (4)H5A—O5—H5B108.3
O8—C37—C38120.6 (4)C16—O2—Eu1i168.9 (3)
C24—C29—H29120.2
Eu1—N3—C15—C14170.4 (3)C25—C24—C23—O3161.1 (4)
Eu1—N3—C11—C1010.9 (4)C25—C24—C23—O415.5 (6)
Eu1—N3—C11—C12169.6 (3)C25—C24—C29—C281.3 (6)
Eu1—O3—C23—O41.7 (4)C25—C26—C27—C280.6 (7)
Eu1—O3—C23—C24174.8 (3)C17—C16—O2—Eu1i138.9 (12)
Eu1—O9—C37—O814.9 (7)C17—C18—C19—C202.2 (8)
Eu1—O9—C37—C38163.1 (3)C17—C22—C21—C200.1 (8)
Eu1—O4—C23—O31.7 (4)C24—C25—C26—C271.0 (6)
Eu1—O4—C23—C24174.8 (3)C24—C29—C28—C270.3 (7)
Eu1—O1—C16—C17178.2 (3)C23—Eu1—N3—C1572.4 (3)
Eu1—O1—C16—O23.6 (7)C23—Eu1—N3—C1198.2 (3)
Eu1—N1—C1—C2170.9 (3)C23—Eu1—O9—C37160.1 (4)
Eu1—N1—C5—C611.0 (4)C23—Eu1—O1—C1698.5 (4)
Eu1—N1—C5—C4170.2 (3)C23—Eu1—N1—C198.4 (3)
Eu1—N2—C6—C7173.7 (3)C23—Eu1—N1—C590.0 (3)
Eu1—N2—C6—C56.5 (4)C23—Eu1—N2—C6121.9 (3)
Eu1—N2—C10—C115.1 (4)C23—Eu1—N2—C1064.5 (3)
Eu1—N2—C10—C9173.7 (3)C23—C24—C29—C28176.9 (4)
N3—Eu1—O3—C2379.5 (2)C16—C17—C18—C19178.8 (4)
N3—Eu1—O9—C37167.1 (4)C16—C17—C22—C21179.8 (4)
N3—Eu1—O4—C2379.4 (2)C10—N2—C6—C70.1 (5)
N3—Eu1—O1—C1695.0 (4)C10—N2—C6—C5179.8 (3)
N3—Eu1—N1—C1176.6 (3)C10—C11—C12—C13178.2 (4)
N3—Eu1—N1—C511.9 (3)C10—C9—C8—C70.7 (6)
N3—Eu1—N2—C6173.5 (3)C1—N1—C5—C6177.3 (3)
N3—Eu1—N2—C100.1 (2)C1—N1—C5—C41.5 (6)
N3—Eu1—C23—O390.9 (2)C31—C32—C33—C340.5 (7)
N3—Eu1—C23—O490.8 (2)C31—C36—C35—C341.1 (7)
N3—C15—C14—C130.1 (7)C38—C43—C42—C410.3 (6)
N3—C11—C12—C131.3 (6)C38—C39—C40—C411.1 (7)
O3—Eu1—N3—C15100.0 (3)C43—C38—C37—O97.5 (5)
O3—Eu1—N3—C1170.6 (3)C43—C38—C37—O8170.6 (4)
O3—Eu1—O9—C37122.8 (4)C43—C38—C39—C400.5 (6)
O3—Eu1—O4—C230.9 (2)C43—C42—C41—C400.3 (7)
O3—Eu1—O1—C16125.6 (4)C37—C38—C43—C42176.3 (4)
O3—Eu1—N1—C1110.6 (3)C37—C38—C39—C40176.9 (4)
O3—Eu1—N1—C577.8 (3)C29—C24—C23—O317.0 (6)
O3—Eu1—N2—C6107.8 (3)C29—C24—C23—O4166.4 (4)
O3—Eu1—N2—C1078.6 (3)C29—C28—C27—C261.2 (7)
O3—Eu1—C23—O4178.3 (4)C3—C4—C5—N10.5 (6)
O9—Eu1—N3—C15112.1 (3)C3—C4—C5—C6178.2 (4)
O9—Eu1—N3—C1177.4 (3)C42—C41—C40—C391.0 (7)
O9—Eu1—O3—C23125.0 (2)C15—N3—C11—C10178.4 (3)
O9—Eu1—O4—C23115.8 (2)C15—N3—C11—C121.1 (5)
O9—Eu1—O1—C1686.5 (4)C11—N3—C15—C140.5 (6)
O9—Eu1—N1—C1115.0 (3)C11—C10—C9—C8179.2 (4)
O9—Eu1—N1—C556.6 (3)C39—C38—C43—C420.2 (6)
O9—Eu1—N2—C688.6 (3)C39—C38—C37—O9176.1 (4)
O9—Eu1—N2—C1085.0 (3)C39—C38—C37—O85.9 (6)
O9—Eu1—C23—O383.6 (3)C26—C25—C24—C23176.2 (4)
O9—Eu1—C23—O498.1 (3)C26—C25—C24—C291.9 (6)
O4—Eu1—N3—C1544.4 (3)C4—C3—C2—C11.3 (7)
O4—Eu1—N3—C11126.2 (3)C2—C3—C4—C50.9 (7)
O4—Eu1—O3—C230.9 (2)C7—C6—C5—N1177.2 (3)
O4—Eu1—O9—C37157.4 (4)C7—C6—C5—C41.6 (6)
O4—Eu1—O1—C1670.6 (4)C5—N1—C1—C21.1 (6)
O4—Eu1—N1—C180.3 (3)C5—C6—C7—C8179.4 (4)
O4—Eu1—N1—C5108.1 (3)C14—C13—C12—C110.7 (7)
O4—Eu1—N2—C6136.0 (2)C12—C13—C14—C150.0 (6)
O4—Eu1—N2—C1050.5 (3)C32—C31—C36—C351.1 (7)
O4—Eu1—C23—O3178.3 (4)C32—C31—C30—O7167.6 (4)
O1—Eu1—N3—C1568.8 (3)C32—C31—C30—O614.4 (6)
O1—Eu1—N3—C11101.7 (3)C32—C33—C34—C350.5 (8)
O1—Eu1—O3—C2380.2 (2)C18—C17—C16—O15.0 (6)
O1—Eu1—O9—C3711.9 (5)C18—C17—C16—O2173.4 (4)
O1—Eu1—O4—C2384.3 (2)C18—C17—C22—C210.5 (7)
O1—Eu1—N1—C137.0 (3)C18—C19—C20—C211.7 (9)
O1—Eu1—N1—C5151.5 (3)C9—C10—C11—N3168.4 (3)
O1—Eu1—N2—C652.9 (3)C9—C10—C11—C1211.1 (6)
O1—Eu1—N2—C10133.6 (3)C36—C31—C32—C330.7 (6)
O1—Eu1—C23—O391.6 (2)C36—C31—C30—O79.4 (6)
O1—Eu1—C23—O486.8 (2)C36—C31—C30—O6168.5 (4)
O1—C16—O2—Eu1i42.9 (16)C36—C35—C34—C330.8 (8)
N1—Eu1—N3—C15174.6 (3)C22—C17—C16—O1174.7 (4)
N1—Eu1—N3—C114.1 (3)C22—C17—C16—O27.0 (6)
N1—Eu1—O3—C23153.3 (2)C22—C17—C18—C191.5 (7)
N1—Eu1—O9—C3739.7 (4)C22—C21—C20—C190.7 (9)
N1—Eu1—O4—C2340.5 (3)C30—C31—C32—C33177.7 (4)
N1—Eu1—O1—C16141.0 (4)C30—C31—C36—C35178.2 (4)
N1—Eu1—N2—C68.3 (2)O5—Eu1—N3—C1578.5 (3)
N1—Eu1—N2—C10178.2 (3)O5—Eu1—N3—C11111.0 (3)
N1—Eu1—C23—O328.9 (3)O5—Eu1—O3—C2398.9 (3)
N1—Eu1—C23—O4149.5 (2)O5—Eu1—O9—C3732.7 (4)
N1—C1—C2—C30.3 (7)O5—Eu1—O4—C23137.4 (2)
N2—Eu1—N3—C15176.5 (3)O5—Eu1—O1—C1665.5 (4)
N2—Eu1—N3—C116.0 (2)O5—Eu1—N1—C139.9 (3)
N2—Eu1—O3—C23146.2 (3)O5—Eu1—N1—C5131.7 (3)
N2—Eu1—O9—C37101.2 (4)O5—Eu1—N2—C634.9 (3)
N2—Eu1—O4—C2333.1 (3)O5—Eu1—N2—C10138.6 (2)
N2—Eu1—O1—C16178.7 (4)O5—Eu1—C23—O3116.1 (2)
N2—Eu1—N1—C1178.5 (3)O5—Eu1—C23—O462.2 (3)
N2—Eu1—N1—C510.0 (3)O2i—Eu1—N3—C1530.6 (3)
N2—Eu1—C23—O331.5 (2)O2i—Eu1—N3—C11158.9 (3)
N2—Eu1—C23—O4150.2 (2)O2i—Eu1—O3—C2316.0 (3)
N2—C6—C7—C80.3 (6)O2i—Eu1—O9—C37110.7 (4)
N2—C6—C5—N12.6 (5)O2i—Eu1—O4—C23164.3 (2)
N2—C6—C5—C4178.6 (3)O2i—Eu1—O1—C164.5 (4)
N2—C10—C11—N310.4 (5)O2i—Eu1—N1—C153.1 (4)
N2—C10—C11—C12170.0 (3)O2i—Eu1—N1—C5118.5 (3)
N2—C10—C9—C80.3 (6)O2i—Eu1—N2—C6134.9 (2)
C6—N2—C10—C11178.8 (3)O2i—Eu1—N2—C1038.6 (3)
C6—N2—C10—C90.0 (5)O2i—Eu1—C23—O3166.5 (2)
C6—C7—C8—C90.7 (6)O2i—Eu1—C23—O415.1 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O8ii0.821.762.582 (4)178
O5—H5A···O80.871.982.796 (4)155
O5—H5B···O4i0.871.952.768 (4)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O8i0.821.762.582 (4)177.6
O5—H5A···O80.871.982.796 (4)154.7
O5—H5B···O4ii0.871.952.768 (4)154.8
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the National Science Foundation for their generous support (NSF-CAREER grant to RES, CHE-0846680).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDul, M.-C., Bourgeois, D., Maynadie, J. & Meyer, D. (2013). Tetrahedron Lett. 54, 6271–6274.  Web of Science CrossRef CAS Google Scholar
First citationFiedler, T., Hilder, M., Junk, P. C., Kynast, U. H., Lezhnina, M. M. & Warzala, M. (2007). Eur. J. Inorg, Chem. pp. 291–301.  Google Scholar
First citationFrost, G. H., Hart, F. A., Heath, C. & Hursthouse, M. B. (1969). J. Chem. Soc. D, 23, 1421–1422.  CSD CrossRef Web of Science Google Scholar
First citationMessimeri, A., Papadimitriou, C., Raptopoulou, C. P., Escuer, A., Perlepes, S. P. & Boudalis, A. K. (2007). Inorg. Chem. Commun. 10, 800–804.  Web of Science CSD CrossRef CAS Google Scholar
First citationRomero, V. H., De la Rosa, E., Salas, P. & Velazquez-Salazar, J. J. (2012). J. Solid State Chem. 196, 243–248.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m328-m329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds