organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1053-o1054

Crystal structure of di­ethyl [(4-nitro­phenyl­amino)(2-hy­dr­oxy­phen­yl)meth­yl]phospho­nate methanol monosolvate

aSchool of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

Edited by S. Parkin, University of Kentucky, USA (Received 9 July 2014; accepted 17 August 2014; online 30 August 2014)

In the title compound, C17H21N2O6P·CH3OH, the planes of the 4-nitro­aniline and 2-hy­droxy­phenyl groups form a dihedral angle of 84.04 (8)°. The P atom exhibits tetra­hedral geometry involving two O-ethyl groups, a Cα atom and a double-bonded O atom. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the α-amino­phospho­nic acid and methanol mol­ecules into chains that propagate parallel to the a axis.

1. Related literature

For background to the synthesis and properties of α-amino­phospho­nic acids, see: Allen et al. (1978[Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature, 272, 56-58.]); Arizpe et al. (2011[Arizpe, A., Sayago, F. J., Jiménez, A. I., Ordóez, M. & Cativiela, C. (2011). Eur. J. Org. Chem. 12, 3074-3081.]); Cherkasov & Galkin (1998[Cherkasov, R. A. & Galkin, V. I. (1998). Russ. Chem. Rev. 67, 857-882.]); Sieńczyk & Oleksyszyn (2009[Sieńczyk, M. & Oleksyszyn, J. (2009). Curr. Med. Chem. 16, 1673-1687.]). For structures of related compounds, see: Li et al. (2008[Li, M.-X., Zhu, M.-L. & Lu, L.-P. (2008). Acta Cryst. E64, o1178-o1179.]); Wang et al. (2012[Wang, Q. M., Zhu, M. L., Lu, L. P., Yuan, C. X., Xing, S., Fu, X. Q., Mei, Y. H. & Hang, Q. W. (2012). Eur. J. Med. Chem. 49, 354-364.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H21N2O6P·CH4O

  • Mr = 412.37

  • Triclinic, [P \overline 1]

  • a = 9.401 (6) Å

  • b = 10.061 (6) Å

  • c = 11.963 (7) Å

  • α = 101.328 (10)°

  • β = 94.183 (10)°

  • γ = 104.549 (9)°

  • V = 1065.0 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.40 × 0.34 × 0.30 mm

2.2. Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.951

  • 14569 measured reflections

  • 5230 independent reflections

  • 2934 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.138

  • S = 1.01

  • 5230 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.82 2.00 2.819 (3) 172
O1—H1⋯O7 0.82 1.95 2.757 (3) 170
C10—H10⋯O5ii 0.93 2.53 3.308 (4) 141
N1—H1A⋯O4iii 0.82 (2) 2.14 (2) 2.959 (3) 171 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z-1; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

As mimics of natural amino acids, α-amino­phospho­nic acids and related derivatives are currently attracting a great deal of inter­est in medicinal chemistry due to their important biological effects (Arizpe, et al., 2011). They have been reported to possess a wide range of biological functions. These include anti­bacterial activities (Allen et al., 1978), action as inhibitors of enzymes such as rennin, HIV proteases, serine proteases and so on (Sieńczyk, et al., 2009).

Experimental top

Synthesis and crystallization top

The synthesis of o-cresol α-amino­phospho­nate N-derivatives with rigid structures was achieved through the Pudovik reaction reaction (Cherkasov et al., 1998). We obtained the title compound following our earlier report (Wang et al., 2012). The synthesis involved two steps: a) the Schiff bases were first prepared in a condensation of 4-nitro­aniline and salicyl­aldehyde in methanol solvent by refluxing equimolar amounts of reagents; b ) reaction of Schiff base with a di­ethyl phospho­nate in methanol solvent under reflux. The title compound was obtained from the filtrate after three days.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically idealized positions and refined as riding, with C–H = 0.93-0.98 Å, O–H = 0.82 Å, and the Uiso(H) = 1.2Ueq (C) for benzene ring, C7, C14, C16 and Uiso(H) = 1.5Ueq (O, C) for O—H groups and C15, C17, C18.

Results and discussion top

The crystal structure of the title compound is triclinic, with space group P1. As seen from Fig. 1, the P atom has tetra­hedral geometry involving two O-ethyl groups (O2, O3), one Cα atom (C7), and a double bond O atom (O4), which is the same as our earlier reports (Li et al., 2008; Wang et al., 2012). The C—P and PO bond lengths are comparable to those in similar structures (Li et al. 2008; Wang et al., 2012). Several hydrogen bonding inter­actions [O7—H7A···O4i (i = x+1,y,z), O1—H1···O7, C10—H10···O5ii (ii=-x, -y, -z-1), N1—H1A···O4iii (iii=-x, -y+1, -z)] exist within in the crystal structure. The dihedral angle formed by the planes of the 4-nitro­aniline and 2-hy­droxy­phenyl groups is 84.08 (8)°.

Related literature top

For background to the synthesis and properties of α-aminophosphonic acids, see: Allen et al. (1978); Arizpe et al. (2011); Cherkasov & Galkin (1998); Sieńczyk & Oleksyszyn (2009). For structures of related compounds, see: Li et al. (2008); Wang et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, drawn so as to highlight the hydrogen-bonding interactions between molecules.
Diethyl [(4-nitrophenylamino)(2-hydroxyphenyl)methyl]phosphonate methanol monosolvate top
Crystal data top
C17H21N2O6P·CH4OZ = 2
Mr = 412.37F(000) = 436
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.401 (6) ÅCell parameters from 1930 reflections
b = 10.061 (6) Åθ = 1.8–28.3°
c = 11.963 (7) ŵ = 0.17 mm1
α = 101.328 (10)°T = 296 K
β = 94.183 (10)°Block, yellow
γ = 104.549 (9)°0.4 × 0.34 × 0.3 mm
V = 1065.0 (12) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5230 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1212
Tmin = 0.935, Tmax = 0.951k = 1313
14569 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0659P]
where P = (Fo2 + 2Fc2)/3
5230 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H21N2O6P·CH4Oγ = 104.549 (9)°
Mr = 412.37V = 1065.0 (12) Å3
Triclinic, P1Z = 2
a = 9.401 (6) ÅMo Kα radiation
b = 10.061 (6) ŵ = 0.17 mm1
c = 11.963 (7) ÅT = 296 K
α = 101.328 (10)°0.4 × 0.34 × 0.3 mm
β = 94.183 (10)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5230 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2934 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.951Rint = 0.051
14569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
5230 reflectionsΔρmin = 0.27 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4255 (3)0.3224 (2)0.17400 (19)0.0408 (5)
C20.4364 (3)0.2362 (3)0.2493 (2)0.0538 (7)
H20.52920.23470.28080.065*
C30.3111 (4)0.1532 (3)0.2778 (2)0.0655 (8)
H30.31920.09620.32910.079*
C40.1720 (4)0.1538 (3)0.2302 (3)0.0692 (8)
H40.08680.09790.24970.083*
C50.1618 (3)0.2385 (3)0.1535 (2)0.0538 (7)
H50.06880.23790.12070.065*
C60.2871 (3)0.3241 (2)0.12431 (18)0.0378 (5)
C70.2760 (2)0.4232 (2)0.04485 (17)0.0348 (5)
H70.37490.45970.02390.042*
C80.2056 (2)0.2631 (2)0.14895 (19)0.0372 (5)
C90.1083 (3)0.2150 (2)0.2517 (2)0.0467 (6)
H90.02570.24920.25950.056*
C100.1327 (3)0.1185 (3)0.3410 (2)0.0526 (7)
H100.06810.08840.40920.063*
C110.2548 (3)0.0660 (2)0.3287 (2)0.0449 (6)
C120.3527 (3)0.1124 (3)0.2294 (2)0.0472 (6)
H120.43470.07720.22270.057*
C130.3303 (3)0.2105 (2)0.1397 (2)0.0428 (6)
H130.39760.24220.07290.051*
C140.3182 (4)0.6256 (4)0.3468 (2)0.0941 (12)
H14A0.27820.70040.38410.113*
H14B0.24760.53630.34550.113*
C150.4561 (4)0.6334 (4)0.4116 (3)0.0989 (12)
H15A0.50200.56740.37000.148*
H15B0.43770.61110.48460.148*
H15C0.52060.72690.42370.148*
C160.2262 (3)0.8152 (3)0.0724 (2)0.0600 (7)
H16A0.27310.86150.15000.072*
H16B0.12080.80690.06960.072*
C170.2894 (4)0.8987 (3)0.0089 (3)0.0853 (10)
H17A0.39450.91100.00260.128*
H17B0.26970.98910.00870.128*
H17C0.24530.85050.08580.128*
C180.8676 (5)0.4263 (6)0.3596 (3)0.154 (2)
H18A0.93790.37430.37160.232*
H18B0.78540.39870.40100.232*
H18C0.91430.52530.38680.232*
N10.1748 (2)0.3567 (2)0.06050 (16)0.0415 (5)
N20.2802 (3)0.0373 (3)0.4225 (2)0.0650 (7)
O10.54719 (18)0.4078 (2)0.14493 (15)0.0566 (5)
H10.62200.40180.18110.085*
O20.33759 (18)0.63846 (17)0.22920 (13)0.0518 (4)
O30.25022 (19)0.67641 (16)0.04156 (14)0.0525 (5)
O40.06458 (17)0.53339 (17)0.14848 (13)0.0478 (4)
O50.1927 (3)0.0771 (3)0.51111 (19)0.1029 (9)
O60.3885 (3)0.0818 (2)0.41134 (17)0.0919 (8)
O70.8177 (2)0.3987 (3)0.24407 (17)0.0785 (6)
H7A0.88430.43590.21040.118*
P10.21847 (7)0.57045 (6)0.12230 (5)0.03809 (18)
H1A0.107 (3)0.391 (2)0.077 (2)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (14)0.0433 (14)0.0362 (12)0.0202 (11)0.0041 (11)0.0060 (11)
C20.0633 (18)0.0542 (16)0.0482 (15)0.0253 (14)0.0009 (13)0.0122 (13)
C30.092 (2)0.0552 (18)0.0595 (18)0.0284 (17)0.0110 (17)0.0260 (14)
C40.073 (2)0.0569 (18)0.081 (2)0.0077 (16)0.0271 (17)0.0307 (16)
C50.0478 (16)0.0494 (16)0.0677 (18)0.0133 (12)0.0112 (13)0.0202 (14)
C60.0427 (13)0.0345 (12)0.0383 (12)0.0170 (10)0.0074 (10)0.0043 (10)
C70.0304 (12)0.0384 (12)0.0371 (12)0.0127 (10)0.0051 (10)0.0069 (10)
C80.0386 (13)0.0356 (12)0.0384 (12)0.0127 (10)0.0057 (10)0.0070 (10)
C90.0420 (14)0.0532 (15)0.0473 (14)0.0244 (12)0.0002 (11)0.0041 (12)
C100.0521 (16)0.0589 (16)0.0433 (14)0.0201 (13)0.0072 (12)0.0010 (12)
C110.0521 (15)0.0439 (14)0.0401 (13)0.0229 (12)0.0043 (11)0.0008 (11)
C120.0491 (15)0.0530 (15)0.0478 (15)0.0301 (12)0.0070 (12)0.0093 (12)
C130.0401 (13)0.0476 (14)0.0421 (13)0.0196 (11)0.0015 (11)0.0047 (11)
C140.077 (2)0.154 (4)0.0440 (17)0.040 (2)0.0036 (17)0.005 (2)
C150.131 (3)0.117 (3)0.0546 (19)0.058 (3)0.007 (2)0.008 (2)
C160.0649 (18)0.0428 (15)0.0774 (19)0.0221 (14)0.0101 (15)0.0153 (14)
C170.102 (3)0.0560 (19)0.106 (3)0.0203 (18)0.030 (2)0.0333 (19)
C180.090 (3)0.273 (6)0.081 (3)0.008 (3)0.006 (2)0.074 (4)
N10.0372 (11)0.0475 (12)0.0416 (11)0.0229 (10)0.0020 (9)0.0017 (9)
N20.0834 (18)0.0676 (16)0.0481 (14)0.0422 (14)0.0002 (13)0.0021 (12)
O10.0382 (10)0.0749 (13)0.0640 (12)0.0186 (9)0.0022 (9)0.0298 (10)
O20.0484 (10)0.0560 (11)0.0440 (10)0.0116 (8)0.0047 (8)0.0020 (8)
O30.0708 (12)0.0400 (9)0.0556 (11)0.0256 (9)0.0171 (9)0.0143 (8)
O40.0395 (9)0.0560 (10)0.0531 (10)0.0234 (8)0.0092 (8)0.0094 (8)
O50.1169 (19)0.120 (2)0.0634 (14)0.0713 (16)0.0256 (14)0.0358 (13)
O60.1136 (18)0.1124 (18)0.0664 (14)0.0860 (16)0.0014 (13)0.0079 (12)
O70.0485 (12)0.1205 (19)0.0717 (14)0.0160 (12)0.0039 (10)0.0441 (13)
P10.0382 (3)0.0382 (3)0.0402 (3)0.0168 (3)0.0047 (3)0.0059 (3)
Geometric parameters (Å, º) top
C1—O11.360 (3)C14—C151.438 (4)
C1—C21.382 (3)C14—O21.458 (3)
C1—C61.396 (3)C14—H14A0.9700
C2—C31.370 (4)C14—H14B0.9700
C2—H20.9300C15—H15A0.9600
C3—C41.390 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.383 (4)C16—O31.451 (3)
C4—H40.9300C16—C171.469 (4)
C5—C61.386 (3)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.522 (3)C17—H17A0.9600
C7—N11.454 (3)C17—H17B0.9600
C7—P11.812 (2)C17—H17C0.9600
C7—H70.9800C18—O71.377 (4)
C8—N11.371 (3)C18—H18A0.9600
C8—C91.401 (3)C18—H18B0.9600
C8—C131.407 (3)C18—H18C0.9600
C9—C101.371 (3)N1—H1A0.82 (2)
C9—H90.9300N2—O61.219 (3)
C10—C111.389 (3)N2—O51.225 (3)
C10—H100.9300O1—H10.8200
C11—C121.372 (3)O2—P11.5557 (18)
C11—N21.450 (3)O3—P11.5638 (18)
C12—C131.376 (3)O4—P11.4734 (18)
C12—H120.9300O7—H7A0.8200
C13—H130.9300
O1—C1—C2122.1 (2)O2—C14—H14A109.3
O1—C1—C6117.4 (2)C15—C14—H14B109.3
C2—C1—C6120.6 (2)O2—C14—H14B109.3
C3—C2—C1120.4 (3)H14A—C14—H14B108.0
C3—C2—H2119.8C14—C15—H15A109.5
C1—C2—H2119.8C14—C15—H15B109.5
C2—C3—C4120.2 (3)H15A—C15—H15B109.5
C2—C3—H3119.9C14—C15—H15C109.5
C4—C3—H3119.9H15A—C15—H15C109.5
C5—C4—C3119.2 (3)H15B—C15—H15C109.5
C5—C4—H4120.4O3—C16—C17109.0 (2)
C3—C4—H4120.4O3—C16—H16A109.9
C4—C5—C6121.5 (3)C17—C16—H16A109.9
C4—C5—H5119.3O3—C16—H16B109.9
C6—C5—H5119.3C17—C16—H16B109.9
C5—C6—C1118.2 (2)H16A—C16—H16B108.3
C5—C6—C7121.6 (2)C16—C17—H17A109.5
C1—C6—C7120.2 (2)C16—C17—H17B109.5
N1—C7—C6113.91 (19)H17A—C17—H17B109.5
N1—C7—P1109.45 (15)C16—C17—H17C109.5
C6—C7—P1108.85 (14)H17A—C17—H17C109.5
N1—C7—H7108.2H17B—C17—H17C109.5
C6—C7—H7108.2O7—C18—H18A109.5
P1—C7—H7108.2O7—C18—H18B109.5
N1—C8—C9119.2 (2)H18A—C18—H18B109.5
N1—C8—C13122.4 (2)O7—C18—H18C109.5
C9—C8—C13118.4 (2)H18A—C18—H18C109.5
C10—C9—C8121.1 (2)H18B—C18—H18C109.5
C10—C9—H9119.5C8—N1—C7123.21 (19)
C8—C9—H9119.5C8—N1—H1A115.2 (17)
C9—C10—C11119.4 (2)C7—N1—H1A119.4 (17)
C9—C10—H10120.3O6—N2—O5121.8 (2)
C11—C10—H10120.3O6—N2—C11119.1 (2)
C12—C11—C10120.7 (2)O5—N2—C11119.1 (2)
C12—C11—N2119.7 (2)C1—O1—H1109.5
C10—C11—N2119.6 (2)C14—O2—P1125.58 (18)
C11—C12—C13120.4 (2)C16—O3—P1121.48 (16)
C11—C12—H12119.8C18—O7—H7A109.5
C13—C12—H12119.8O4—P1—O2114.76 (10)
C12—C13—C8120.0 (2)O4—P1—O3114.66 (10)
C12—C13—H13120.0O2—P1—O3104.51 (10)
C8—C13—H13120.0O4—P1—C7114.21 (10)
C15—C14—O2111.4 (3)O2—P1—C7105.37 (10)
C15—C14—H14A109.3O3—P1—C7101.94 (10)
O1—C1—C2—C3179.0 (2)C9—C8—C13—C121.3 (3)
C6—C1—C2—C31.2 (4)C9—C8—N1—C7173.7 (2)
C1—C2—C3—C40.7 (4)C13—C8—N1—C77.8 (3)
C2—C3—C4—C50.4 (4)C6—C7—N1—C872.5 (3)
C3—C4—C5—C60.9 (4)P1—C7—N1—C8165.39 (18)
C4—C5—C6—C10.4 (4)C12—C11—N2—O60.2 (4)
C4—C5—C6—C7176.7 (2)C10—C11—N2—O6179.3 (3)
O1—C1—C6—C5179.6 (2)C12—C11—N2—O5179.4 (3)
C2—C1—C6—C50.6 (3)C10—C11—N2—O50.3 (4)
O1—C1—C6—C72.4 (3)C15—C14—O2—P1150.2 (2)
C2—C1—C6—C7177.8 (2)C17—C16—O3—P1170.2 (2)
C5—C6—C7—N149.0 (3)C14—O2—P1—O421.6 (3)
C1—C6—C7—N1133.9 (2)C14—O2—P1—O3148.0 (2)
C5—C6—C7—P173.4 (2)C14—O2—P1—C7104.9 (2)
C1—C6—C7—P1103.7 (2)C16—O3—P1—O458.8 (2)
N1—C8—C9—C10178.1 (2)C16—O3—P1—O267.7 (2)
C13—C8—C9—C100.5 (4)C16—O3—P1—C7177.30 (19)
C8—C9—C10—C110.9 (4)N1—C7—P1—O456.04 (18)
C9—C10—C11—C121.6 (4)C6—C7—P1—O469.04 (17)
C9—C10—C11—N2179.3 (2)N1—C7—P1—O2177.09 (14)
C10—C11—C12—C130.8 (4)C6—C7—P1—O257.82 (17)
N2—C11—C12—C13179.9 (2)N1—C7—P1—O368.20 (17)
C11—C12—C13—C80.6 (4)C6—C7—P1—O3166.71 (15)
N1—C8—C13—C12177.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.822.002.819 (3)172
O1—H1···O70.821.952.757 (3)170
C10—H10···O5ii0.932.533.308 (4)141
N1—H1A···O4iii0.82 (2)2.14 (2)2.959 (3)171 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.822.002.819 (3)172.2
O1—H1···O70.821.952.757 (3)169.5
C10—H10···O5ii0.932.533.308 (4)141.2
N1—H1A···O4iii0.82 (2)2.14 (2)2.959 (3)171 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation for Young Scientists of China (grant No. 21301150), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 13KJB150037), the Foundation of Jiangsu Provincial Key Laboratory of Solonchak (grant No. JKLBS2012022), the Doctor and Professor Foundation of Yancheng Teachers' University (grant No. 12YSYJB0117) and the Practice Innovation Training Program Projects for the Jiangsu College Students (grant Nos. 201310324034Y and 201410324038Y).

References

First citationAllen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature, 272, 56–58.  CrossRef CAS PubMed Web of Science Google Scholar
First citationArizpe, A., Sayago, F. J., Jiménez, A. I., Ordóez, M. & Cativiela, C. (2011). Eur. J. Org. Chem. 12, 3074–3081.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherkasov, R. A. & Galkin, V. I. (1998). Russ. Chem. Rev. 67, 857–882.  CrossRef Google Scholar
First citationLi, M.-X., Zhu, M.-L. & Lu, L.-P. (2008). Acta Cryst. E64, o1178–o1179.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieńczyk, M. & Oleksyszyn, J. (2009). Curr. Med. Chem. 16, 1673–1687.  Web of Science PubMed Google Scholar
First citationWang, Q. M., Zhu, M. L., Lu, L. P., Yuan, C. X., Xing, S., Fu, X. Q., Mei, Y. H. & Hang, Q. W. (2012). Eur. J. Med. Chem. 49, 354–364.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1053-o1054
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds