metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m330-m331

Crystal structure of {2-[({2-[(2-amino­eth­yl)amino]­eth­yl}imino)­meth­yl]pheno­lato}aqua­copper(II) bromide

aTaras Shevchenko National University of Kyiv, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: spetrusenko@yahoo.com

Edited by G. M. Rosair, Heriot-Watt University, Scotland (Received 14 May 2014; accepted 31 July 2014; online 16 August 2014)

In the mononuclear copper(II) title complex, [Cu(C11H16N3O)(H2O)]Br, the CuII atom is coordinated by one O and three N atoms of the Schiff base ligand that forms together with one water mol­ecule a slightly distorted [CuN3O2] square-pyramidal polyhedron. The deviation of the CuII atom from the mean equatorial plane is 0.182 (2) Å. The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes = 10.4 (1)°], and the water molecule is situated in the apical site. All coordinating atoms (except the imine nitro­gen) and the bromide ion contribute to the formation of the N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonds, which link mol­ecules into chains along [01-1].

1. Related literature

For structures isotypic with that of the title compound, see: Zhu et al. (2002[Zhu, H.-L., Li, S.-Y., He, W.-M. & Yu, K.-B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 599-600.], 2004[Zhu, H.-L., Li, S.-Y., Wang, Zh.-D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203-206.]); He (2003[He, G.-F. (2003). Chin. J. Spectrosc. Lab. 5, 647-649.]). For the direct synthesis of copper-containing coordination compounds using the salt route, see: Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]); Buvaylo et al. (2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]); Nikitina et al. (2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.]). For the direct synthesis of polynuclear copper-containing complexes, see: Nesterova (Pryma) et al. (2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.]); Nesterova et al. (2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu(C11H16N3O)(H2O)]Br

  • Mr = 367.73

  • Monoclinic, P 21 /c

  • a = 9.2226 (11) Å

  • b = 14.0333 (13) Å

  • c = 10.9206 (11) Å

  • β = 102.355 (11)°

  • V = 1380.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.40 mm

2.2. Data collection

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.268, Tmax = 0.268

  • 7804 measured reflections

  • 4004 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.097

  • S = 0.95

  • 4004 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2OB⋯Br1 0.82 2.51 3.323 (3) 173
N2—H2N⋯Br1 0.85 2.58 3.429 (3) 177
O2—H2OA⋯O1i 0.82 1.90 2.712 (4) 171
N3—H3NA⋯Br1ii 0.85 2.68 3.499 (3) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It has been shown that the direct synthesis is an efficient method to obtain novel homo and heterometallic mono/polynuclear coordination compounds (Kovbasyuk et al., 1997; Vassilyeva et al., 1997; Makhankova et al., 2002; Pryma et al., 2003; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005; Buvaylo et al., 2005; Nikitina et al., 2008). The title compound, [Cu(C11H18N3O2)(H2O)]Br, was obtained unintentionally as the product of an attempted synthesis of a Cu/ Mn heterometallic complex using zerovalent copper and manganese powders, ammonium bromide, salicylic aldehyde and diethylenetriamine in dimethylformamide on air.

As shown in Fig. 1, the CuII atom has a slightly distorted square-pyramidal geometry formed by one oxygen and three nitrogen atoms of the Schiff base ligand as well one oxygen atom of the coordinated water molecule. The deviation of the copper atom from the mean equatorial plane is 0.182 (2) Å. The range of Cu–N and Cu–O bond distances in the equatorial plane is 1.918 (3) - 2.018 (3) Å, while the Cu–O axial distance is 2.333 (2) Å. These data are in a good agreement with literature values (Zhu et al.,2002, 2004; He et al., 2003). The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes is 10.4 (1)°].

In the crystal, OH···O hydrogen bonds form molecular dimers. OH···Br and NH···Br hydrogen bonds link the dimers into chains along the [011] crystallographic direction (See Table containing Hydrogen-bond geometry and Fig.2).

Related literature top

For a monoclinic isomorph of the title compound, see: Zhu et al. (2002, 2004); He (2003). For the direct synthesis of copper-containing coordination compounds using the salt route, see: Kovbasyuk et al. (1997); Pryma et al. (2003); Buvaylo et al. (2005); Nikitina et al. (2008); Vassilyeva et al. (1997); Makhankova et al. (2002). For the direct synthesis of polynuclear copper-containing complexes, see: Nesterova (Pryma) et al. (2004); Nesterova et al. (2005).

Experimental top

The title compound was synthesized by addition of manganese powder 0.055 g (1 mmol), copper powder 0.06 g (1 mmol) and NH4Br 0.392 g (4 mmol) to the previously prepared Schiff base ligand solution [mixture of salicylic aldehyde 0.21 ml (2 mmol) and diethylenetriamine 0.108 ml (1 mmol) in dimethylformamide (10 ml) which was stirred about 15 min at 323–333 K until the mixture turned yellow]. The total reaction mixture was stirred magnetically for 4 h until the complete dissolution of manganese and copper powders was observed. Dark green crystals that precipitated after 1 day were collected by filtration and dried in air.

Refinement top

Structure was solved by direct method and refined against F2 with anisotropic refinement for all non-hydrogen atoms. All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.82 Å, N–H 0.85 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for water).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds shown as dashed lines.
{2-[({2-[(2-Aminoethyl)amino]ethyl}imino)methyl]phenolato}aquacopper(II) bromide top
Crystal data top
[Cu(C11H16N3O)(H2O)]BrF(000) = 740
Mr = 367.73Dx = 1.769 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1502 reflections
a = 9.2226 (11) Åθ = 2.9–32.2°
b = 14.0333 (13) ŵ = 4.47 mm1
c = 10.9206 (11) ÅT = 293 K
β = 102.355 (11)°Block, green
V = 1380.7 (3) Å30.40 × 0.40 × 0.40 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
4004 independent reflections
Radiation source: Enhance (Mo) X-ray Source2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω scansh = 712
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1619
Tmin = 0.268, Tmax = 0.268l = 1512
7804 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
4004 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C11H16N3O)(H2O)]BrV = 1380.7 (3) Å3
Mr = 367.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2226 (11) ŵ = 4.47 mm1
b = 14.0333 (13) ÅT = 293 K
c = 10.9206 (11) Å0.40 × 0.40 × 0.40 mm
β = 102.355 (11)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
4004 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2334 reflections with I > 2σ(I)
Tmin = 0.268, Tmax = 0.268Rint = 0.045
7804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.95Δρmax = 0.98 e Å3
4004 reflectionsΔρmin = 0.38 e Å3
163 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67287 (6)0.58118 (3)0.65849 (4)0.03317 (14)
Br10.70894 (6)0.32849 (3)0.91251 (4)0.04828 (15)
O10.6489 (3)0.61004 (19)0.4836 (2)0.0412 (7)
O20.6414 (3)0.41770 (17)0.6240 (2)0.0401 (7)
H2OA0.55480.40320.59490.060*
H2OB0.66140.39120.69200.060*
N10.8883 (4)0.5872 (2)0.6891 (3)0.0346 (8)
N20.7031 (4)0.5675 (2)0.8462 (3)0.0387 (8)
H2N0.70590.50790.86040.046*
N30.4595 (4)0.6068 (2)0.6646 (3)0.0399 (8)
H3NA0.43580.66320.64110.048*
H3NB0.40870.56790.61320.048*
C10.9071 (4)0.6273 (2)0.4771 (3)0.0302 (8)
C20.7532 (5)0.6287 (2)0.4219 (3)0.0313 (9)
C30.7118 (5)0.6529 (2)0.2942 (3)0.0349 (9)
H30.61170.65420.25560.042*
C40.8153 (5)0.6747 (3)0.2252 (4)0.0424 (11)
H40.78370.69120.14120.051*
C50.9668 (5)0.6727 (3)0.2784 (4)0.0463 (11)
H51.03680.68640.23090.056*
C61.0092 (5)0.6498 (3)0.4026 (4)0.0419 (10)
H61.11000.64910.43940.050*
C70.9648 (5)0.6070 (2)0.6085 (4)0.0366 (9)
H71.06730.60850.63640.044*
C80.9587 (5)0.5675 (3)0.8202 (4)0.0467 (11)
H8A1.05280.60070.84290.056*
H8B0.97710.49970.83200.056*
C90.8548 (5)0.6011 (3)0.9012 (4)0.0411 (10)
H9A0.88680.57620.98550.049*
H9B0.85610.67020.90580.049*
C100.5790 (5)0.6137 (3)0.8863 (4)0.0440 (11)
H10A0.59350.68220.88990.053*
H10B0.57280.59150.96910.053*
C110.4385 (5)0.5896 (3)0.7935 (4)0.0492 (11)
H11A0.41320.52330.80270.059*
H11B0.35760.62870.80920.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0316 (3)0.0396 (3)0.0258 (2)0.0004 (2)0.00050 (19)0.0017 (2)
Br10.0532 (3)0.0425 (2)0.0456 (3)0.0024 (2)0.0028 (2)0.0084 (2)
O10.0259 (16)0.0651 (18)0.0285 (14)0.0052 (14)0.0029 (12)0.0099 (13)
O20.0341 (17)0.0430 (15)0.0378 (15)0.0046 (13)0.0039 (12)0.0007 (13)
N10.032 (2)0.0361 (17)0.0306 (17)0.0052 (15)0.0046 (14)0.0041 (15)
N20.053 (2)0.0278 (16)0.0327 (18)0.0054 (16)0.0025 (16)0.0013 (14)
N30.037 (2)0.0425 (18)0.0396 (19)0.0004 (16)0.0076 (16)0.0011 (15)
C10.027 (2)0.0261 (17)0.036 (2)0.0005 (17)0.0039 (17)0.0055 (16)
C20.033 (2)0.0300 (19)0.031 (2)0.0043 (18)0.0052 (17)0.0009 (16)
C30.035 (2)0.037 (2)0.029 (2)0.0076 (18)0.0001 (17)0.0034 (16)
C40.058 (3)0.036 (2)0.035 (2)0.004 (2)0.014 (2)0.0020 (18)
C50.047 (3)0.047 (2)0.052 (3)0.002 (2)0.026 (2)0.012 (2)
C60.032 (3)0.040 (2)0.055 (3)0.0030 (19)0.012 (2)0.010 (2)
C70.024 (2)0.036 (2)0.046 (2)0.0033 (17)0.0014 (19)0.0055 (18)
C80.047 (3)0.052 (3)0.032 (2)0.014 (2)0.0111 (19)0.0004 (19)
C90.047 (3)0.043 (2)0.028 (2)0.003 (2)0.0043 (19)0.0004 (18)
C100.054 (3)0.045 (2)0.036 (2)0.002 (2)0.015 (2)0.0047 (18)
C110.048 (3)0.059 (3)0.043 (3)0.008 (2)0.016 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O11.919 (3)C2—C31.407 (5)
Cu1—N11.945 (3)C3—C41.371 (5)
Cu1—N32.016 (3)C3—H30.9300
Cu1—N22.018 (3)C4—C51.395 (6)
Cu1—O22.333 (2)C4—H40.9300
O1—C21.313 (4)C5—C61.367 (6)
O2—H2OA0.8197C5—H50.9300
O2—H2OB0.8159C6—H60.9300
N1—C71.271 (5)C7—H70.9300
N1—C81.466 (5)C8—C91.512 (6)
N2—C101.461 (5)C8—H8A0.9700
N2—C91.477 (5)C8—H8B0.9700
N2—H2N0.8495C9—H9A0.9700
N3—C111.481 (5)C9—H9B0.9700
N3—H3NA0.8455C10—C111.503 (6)
N3—H3NB0.8494C10—H10A0.9700
C1—C61.407 (5)C10—H10B0.9700
C1—C21.418 (5)C11—H11A0.9700
C1—C71.447 (5)C11—H11B0.9700
O1—Cu1—N193.31 (12)C2—C3—H3119.1
O1—Cu1—N395.17 (12)C3—C4—C5121.3 (4)
N1—Cu1—N3162.80 (13)C3—C4—H4119.3
O1—Cu1—N2173.18 (12)C5—C4—H4119.3
N1—Cu1—N285.17 (14)C6—C5—C4117.8 (4)
N3—Cu1—N284.65 (14)C6—C5—H5121.1
O1—Cu1—O293.61 (10)C4—C5—H5121.1
N1—Cu1—O299.09 (11)C5—C6—C1122.8 (4)
N3—Cu1—O295.29 (11)C5—C6—H6118.6
N2—Cu1—O293.20 (10)C1—C6—H6118.6
C2—O1—Cu1127.7 (2)N1—C7—C1126.1 (4)
Cu1—O2—H2OA112.6N1—C7—H7117.0
Cu1—O2—H2OB107.8C1—C7—H7117.0
H2OA—O2—H2OB104.6N1—C8—C9108.0 (3)
C7—N1—C8121.5 (4)N1—C8—H8A110.1
C7—N1—Cu1126.0 (3)C9—C8—H8A110.1
C8—N1—Cu1112.5 (3)N1—C8—H8B110.1
C10—N2—C9118.1 (3)C9—C8—H8B110.1
C10—N2—Cu1108.4 (2)H8A—C8—H8B108.4
C9—N2—Cu1107.2 (2)N2—C9—C8109.0 (3)
C10—N2—H2N112.2N2—C9—H9A109.9
C9—N2—H2N104.5C8—C9—H9A109.9
Cu1—N2—H2N105.7N2—C9—H9B109.9
C11—N3—Cu1109.3 (3)C8—C9—H9B109.9
C11—N3—H3NA111.3H9A—C9—H9B108.3
Cu1—N3—H3NA110.3N2—C10—C11108.4 (3)
C11—N3—H3NB111.0N2—C10—H10A110.0
Cu1—N3—H3NB105.5C11—C10—H10A110.0
H3NA—N3—H3NB109.3N2—C10—H10B110.0
C6—C1—C2119.0 (4)C11—C10—H10B110.0
C6—C1—C7117.9 (4)H10A—C10—H10B108.4
C2—C1—C7123.1 (4)N3—C11—C10109.5 (4)
O1—C2—C3118.9 (4)N3—C11—H11A109.8
O1—C2—C1123.7 (3)C10—C11—H11A109.8
C3—C2—C1117.3 (4)N3—C11—H11B109.8
C4—C3—C2121.7 (4)C10—C11—H11B109.8
C4—C3—H3119.1H11A—C11—H11B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OB···Br10.822.513.323 (3)173
N2—H2N···Br10.852.583.429 (3)177
O2—H2OA···O1i0.821.902.712 (4)171
N3—H3NA···Br1ii0.852.683.499 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2OB···Br10.822.513.323 (3)172.5
N2—H2N···Br10.852.583.429 (3)177.3
O2—H2OA···O1i0.821.902.712 (4)170.7
N3—H3NA···Br1ii0.852.683.499 (3)163.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, G.-F. (2003). Chin. J. Spectrosc. Lab. 5, 647–649.  Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.  Web of Science CSD CrossRef Google Scholar
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-L., Li, S.-Y., He, W.-M. & Yu, K.-B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 599–600.  CAS Google Scholar
First citationZhu, H.-L., Li, S.-Y., Wang, Zh.-D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages m330-m331
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds