metal-organic compounds
of {2-[({2-[(2-aminoethyl)amino]ethyl}imino)methyl]phenolato}aquacopper(II) bromide
aTaras Shevchenko National University of Kyiv, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: spetrusenko@yahoo.com
In the mononuclear copper(II) title complex, [Cu(C11H16N3O)(H2O)]Br, the CuII atom is coordinated by one O and three N atoms of the Schiff base ligand that forms together with one water molecule a slightly distorted [CuN3O2] square-pyramidal polyhedron. The deviation of the CuII atom from the mean equatorial plane is 0.182 (2) Å. The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes = 10.4 (1)°], and the water molecule is situated in the apical site. All coordinating atoms (except the imine nitrogen) and the bromide ion contribute to the formation of the N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonds, which link molecules into chains along [01-1].
Keywords: crystal structure; copper(II) complex; Schiff base ligand; bromide; hydrogen bonding.
CCDC reference: 1017209
1. Related literature
For structures isotypic with that of the title compound, see: Zhu et al. (2002, 2004); He (2003). For the direct synthesis of copper-containing coordination compounds using the salt route, see: Kovbasyuk et al. (1997); Pryma et al. (2003); Buvaylo et al. (2005); Nikitina et al. (2008); Vassilyeva et al. (1997); Makhankova et al. (2002). For the direct synthesis of polynuclear copper-containing complexes, see: Nesterova (Pryma) et al. (2004); Nesterova et al. (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1017209
10.1107/S1600536814017590/rn2126sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017590/rn2126Isup2.hkl
The title compound was synthesized by addition of manganese powder 0.055 g (1 mmol), copper powder 0.06 g (1 mmol) and NH4Br 0.392 g (4 mmol) to the previously prepared Schiff base ligand solution [mixture of salicylic aldehyde 0.21 ml (2 mmol) and diethylenetriamine 0.108 ml (1 mmol) in dimethylformamide (10 ml) which was stirred about 15 min at 323–333 K until the mixture turned yellow]. The total reaction mixture was stirred magnetically for 4 h until the complete dissolution of manganese and copper powders was observed. Dark green crystals that precipitated after 1 day were collected by filtration and dried in air.
Structure was solved by direct method and refined against F2 with anisotropic
for all non-hydrogen atoms. All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.82 Å, N–H 0.85 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for water).Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines. | |
Fig. 2. Crystal packing of the title compound with hydrogen bonds shown as dashed lines. |
[Cu(C11H16N3O)(H2O)]Br | F(000) = 740 |
Mr = 367.73 | Dx = 1.769 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1502 reflections |
a = 9.2226 (11) Å | θ = 2.9–32.2° |
b = 14.0333 (13) Å | µ = 4.47 mm−1 |
c = 10.9206 (11) Å | T = 293 K |
β = 102.355 (11)° | Block, green |
V = 1380.7 (3) Å3 | 0.40 × 0.40 × 0.40 mm |
Z = 4 |
Agilent Xcalibur Sapphire3 diffractometer | 4004 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2334 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 2.9° |
ω scans | h = −7→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −16→19 |
Tmin = 0.268, Tmax = 0.268 | l = −15→12 |
7804 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3 |
4004 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.98 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Cu(C11H16N3O)(H2O)]Br | V = 1380.7 (3) Å3 |
Mr = 367.73 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2226 (11) Å | µ = 4.47 mm−1 |
b = 14.0333 (13) Å | T = 293 K |
c = 10.9206 (11) Å | 0.40 × 0.40 × 0.40 mm |
β = 102.355 (11)° |
Agilent Xcalibur Sapphire3 diffractometer | 4004 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2334 reflections with I > 2σ(I) |
Tmin = 0.268, Tmax = 0.268 | Rint = 0.045 |
7804 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.98 e Å−3 |
4004 reflections | Δρmin = −0.38 e Å−3 |
163 parameters |
Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.67287 (6) | 0.58118 (3) | 0.65849 (4) | 0.03317 (14) | |
Br1 | 0.70894 (6) | 0.32849 (3) | 0.91251 (4) | 0.04828 (15) | |
O1 | 0.6489 (3) | 0.61004 (19) | 0.4836 (2) | 0.0412 (7) | |
O2 | 0.6414 (3) | 0.41770 (17) | 0.6240 (2) | 0.0401 (7) | |
H2OA | 0.5548 | 0.4032 | 0.5949 | 0.060* | |
H2OB | 0.6614 | 0.3912 | 0.6920 | 0.060* | |
N1 | 0.8883 (4) | 0.5872 (2) | 0.6891 (3) | 0.0346 (8) | |
N2 | 0.7031 (4) | 0.5675 (2) | 0.8462 (3) | 0.0387 (8) | |
H2N | 0.7059 | 0.5079 | 0.8604 | 0.046* | |
N3 | 0.4595 (4) | 0.6068 (2) | 0.6646 (3) | 0.0399 (8) | |
H3NA | 0.4358 | 0.6632 | 0.6411 | 0.048* | |
H3NB | 0.4087 | 0.5679 | 0.6132 | 0.048* | |
C1 | 0.9071 (4) | 0.6273 (2) | 0.4771 (3) | 0.0302 (8) | |
C2 | 0.7532 (5) | 0.6287 (2) | 0.4219 (3) | 0.0313 (9) | |
C3 | 0.7118 (5) | 0.6529 (2) | 0.2942 (3) | 0.0349 (9) | |
H3 | 0.6117 | 0.6542 | 0.2556 | 0.042* | |
C4 | 0.8153 (5) | 0.6747 (3) | 0.2252 (4) | 0.0424 (11) | |
H4 | 0.7837 | 0.6912 | 0.1412 | 0.051* | |
C5 | 0.9668 (5) | 0.6727 (3) | 0.2784 (4) | 0.0463 (11) | |
H5 | 1.0368 | 0.6864 | 0.2309 | 0.056* | |
C6 | 1.0092 (5) | 0.6498 (3) | 0.4026 (4) | 0.0419 (10) | |
H6 | 1.1100 | 0.6491 | 0.4394 | 0.050* | |
C7 | 0.9648 (5) | 0.6070 (2) | 0.6085 (4) | 0.0366 (9) | |
H7 | 1.0673 | 0.6085 | 0.6364 | 0.044* | |
C8 | 0.9587 (5) | 0.5675 (3) | 0.8202 (4) | 0.0467 (11) | |
H8A | 1.0528 | 0.6007 | 0.8429 | 0.056* | |
H8B | 0.9771 | 0.4997 | 0.8320 | 0.056* | |
C9 | 0.8548 (5) | 0.6011 (3) | 0.9012 (4) | 0.0411 (10) | |
H9A | 0.8868 | 0.5762 | 0.9855 | 0.049* | |
H9B | 0.8561 | 0.6702 | 0.9058 | 0.049* | |
C10 | 0.5790 (5) | 0.6137 (3) | 0.8863 (4) | 0.0440 (11) | |
H10A | 0.5935 | 0.6822 | 0.8899 | 0.053* | |
H10B | 0.5728 | 0.5915 | 0.9691 | 0.053* | |
C11 | 0.4385 (5) | 0.5896 (3) | 0.7935 (4) | 0.0492 (11) | |
H11A | 0.4132 | 0.5233 | 0.8027 | 0.059* | |
H11B | 0.3576 | 0.6287 | 0.8092 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0316 (3) | 0.0396 (3) | 0.0258 (2) | 0.0004 (2) | 0.00050 (19) | 0.0017 (2) |
Br1 | 0.0532 (3) | 0.0425 (2) | 0.0456 (3) | −0.0024 (2) | 0.0028 (2) | 0.0084 (2) |
O1 | 0.0259 (16) | 0.0651 (18) | 0.0285 (14) | −0.0052 (14) | −0.0029 (12) | 0.0099 (13) |
O2 | 0.0341 (17) | 0.0430 (15) | 0.0378 (15) | −0.0046 (13) | −0.0039 (12) | −0.0007 (13) |
N1 | 0.032 (2) | 0.0361 (17) | 0.0306 (17) | 0.0052 (15) | −0.0046 (14) | −0.0041 (15) |
N2 | 0.053 (2) | 0.0278 (16) | 0.0327 (18) | −0.0054 (16) | 0.0025 (16) | 0.0013 (14) |
N3 | 0.037 (2) | 0.0425 (18) | 0.0396 (19) | −0.0004 (16) | 0.0076 (16) | −0.0011 (15) |
C1 | 0.027 (2) | 0.0261 (17) | 0.036 (2) | 0.0005 (17) | 0.0039 (17) | −0.0055 (16) |
C2 | 0.033 (2) | 0.0300 (19) | 0.031 (2) | −0.0043 (18) | 0.0052 (17) | −0.0009 (16) |
C3 | 0.035 (2) | 0.037 (2) | 0.029 (2) | −0.0076 (18) | 0.0001 (17) | −0.0034 (16) |
C4 | 0.058 (3) | 0.036 (2) | 0.035 (2) | −0.004 (2) | 0.014 (2) | −0.0020 (18) |
C5 | 0.047 (3) | 0.047 (2) | 0.052 (3) | 0.002 (2) | 0.026 (2) | −0.012 (2) |
C6 | 0.032 (3) | 0.040 (2) | 0.055 (3) | −0.0030 (19) | 0.012 (2) | −0.010 (2) |
C7 | 0.024 (2) | 0.036 (2) | 0.046 (2) | 0.0033 (17) | −0.0014 (19) | −0.0055 (18) |
C8 | 0.047 (3) | 0.052 (3) | 0.032 (2) | 0.014 (2) | −0.0111 (19) | 0.0004 (19) |
C9 | 0.047 (3) | 0.043 (2) | 0.028 (2) | 0.003 (2) | −0.0043 (19) | 0.0004 (18) |
C10 | 0.054 (3) | 0.045 (2) | 0.036 (2) | −0.002 (2) | 0.015 (2) | −0.0047 (18) |
C11 | 0.048 (3) | 0.059 (3) | 0.043 (3) | −0.008 (2) | 0.016 (2) | −0.005 (2) |
Cu1—O1 | 1.919 (3) | C2—C3 | 1.407 (5) |
Cu1—N1 | 1.945 (3) | C3—C4 | 1.371 (5) |
Cu1—N3 | 2.016 (3) | C3—H3 | 0.9300 |
Cu1—N2 | 2.018 (3) | C4—C5 | 1.395 (6) |
Cu1—O2 | 2.333 (2) | C4—H4 | 0.9300 |
O1—C2 | 1.313 (4) | C5—C6 | 1.367 (6) |
O2—H2OA | 0.8197 | C5—H5 | 0.9300 |
O2—H2OB | 0.8159 | C6—H6 | 0.9300 |
N1—C7 | 1.271 (5) | C7—H7 | 0.9300 |
N1—C8 | 1.466 (5) | C8—C9 | 1.512 (6) |
N2—C10 | 1.461 (5) | C8—H8A | 0.9700 |
N2—C9 | 1.477 (5) | C8—H8B | 0.9700 |
N2—H2N | 0.8495 | C9—H9A | 0.9700 |
N3—C11 | 1.481 (5) | C9—H9B | 0.9700 |
N3—H3NA | 0.8455 | C10—C11 | 1.503 (6) |
N3—H3NB | 0.8494 | C10—H10A | 0.9700 |
C1—C6 | 1.407 (5) | C10—H10B | 0.9700 |
C1—C2 | 1.418 (5) | C11—H11A | 0.9700 |
C1—C7 | 1.447 (5) | C11—H11B | 0.9700 |
O1—Cu1—N1 | 93.31 (12) | C2—C3—H3 | 119.1 |
O1—Cu1—N3 | 95.17 (12) | C3—C4—C5 | 121.3 (4) |
N1—Cu1—N3 | 162.80 (13) | C3—C4—H4 | 119.3 |
O1—Cu1—N2 | 173.18 (12) | C5—C4—H4 | 119.3 |
N1—Cu1—N2 | 85.17 (14) | C6—C5—C4 | 117.8 (4) |
N3—Cu1—N2 | 84.65 (14) | C6—C5—H5 | 121.1 |
O1—Cu1—O2 | 93.61 (10) | C4—C5—H5 | 121.1 |
N1—Cu1—O2 | 99.09 (11) | C5—C6—C1 | 122.8 (4) |
N3—Cu1—O2 | 95.29 (11) | C5—C6—H6 | 118.6 |
N2—Cu1—O2 | 93.20 (10) | C1—C6—H6 | 118.6 |
C2—O1—Cu1 | 127.7 (2) | N1—C7—C1 | 126.1 (4) |
Cu1—O2—H2OA | 112.6 | N1—C7—H7 | 117.0 |
Cu1—O2—H2OB | 107.8 | C1—C7—H7 | 117.0 |
H2OA—O2—H2OB | 104.6 | N1—C8—C9 | 108.0 (3) |
C7—N1—C8 | 121.5 (4) | N1—C8—H8A | 110.1 |
C7—N1—Cu1 | 126.0 (3) | C9—C8—H8A | 110.1 |
C8—N1—Cu1 | 112.5 (3) | N1—C8—H8B | 110.1 |
C10—N2—C9 | 118.1 (3) | C9—C8—H8B | 110.1 |
C10—N2—Cu1 | 108.4 (2) | H8A—C8—H8B | 108.4 |
C9—N2—Cu1 | 107.2 (2) | N2—C9—C8 | 109.0 (3) |
C10—N2—H2N | 112.2 | N2—C9—H9A | 109.9 |
C9—N2—H2N | 104.5 | C8—C9—H9A | 109.9 |
Cu1—N2—H2N | 105.7 | N2—C9—H9B | 109.9 |
C11—N3—Cu1 | 109.3 (3) | C8—C9—H9B | 109.9 |
C11—N3—H3NA | 111.3 | H9A—C9—H9B | 108.3 |
Cu1—N3—H3NA | 110.3 | N2—C10—C11 | 108.4 (3) |
C11—N3—H3NB | 111.0 | N2—C10—H10A | 110.0 |
Cu1—N3—H3NB | 105.5 | C11—C10—H10A | 110.0 |
H3NA—N3—H3NB | 109.3 | N2—C10—H10B | 110.0 |
C6—C1—C2 | 119.0 (4) | C11—C10—H10B | 110.0 |
C6—C1—C7 | 117.9 (4) | H10A—C10—H10B | 108.4 |
C2—C1—C7 | 123.1 (4) | N3—C11—C10 | 109.5 (4) |
O1—C2—C3 | 118.9 (4) | N3—C11—H11A | 109.8 |
O1—C2—C1 | 123.7 (3) | C10—C11—H11A | 109.8 |
C3—C2—C1 | 117.3 (4) | N3—C11—H11B | 109.8 |
C4—C3—C2 | 121.7 (4) | C10—C11—H11B | 109.8 |
C4—C3—H3 | 119.1 | H11A—C11—H11B | 108.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2OB···Br1 | 0.82 | 2.51 | 3.323 (3) | 173 |
N2—H2N···Br1 | 0.85 | 2.58 | 3.429 (3) | 177 |
O2—H2OA···O1i | 0.82 | 1.90 | 2.712 (4) | 171 |
N3—H3NA···Br1ii | 0.85 | 2.68 | 3.499 (3) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2OB···Br1 | 0.82 | 2.51 | 3.323 (3) | 172.5 |
N2—H2N···Br1 | 0.85 | 2.58 | 3.429 (3) | 177.3 |
O2—H2OA···O1i | 0.82 | 1.90 | 2.712 (4) | 170.7 |
N3—H3NA···Br1ii | 0.85 | 2.68 | 3.499 (3) | 163.9 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).
References
Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, G.-F. (2003). Chin. J. Spectrosc. Lab. 5, 647–649. Google Scholar
Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163. CSD CrossRef CAS Web of Science Google Scholar
Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259. Web of Science CSD CrossRef Google Scholar
Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434. Web of Science CSD CrossRef CAS Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, H.-L., Li, S.-Y., He, W.-M. & Yu, K.-B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 599–600. CAS Google Scholar
Zhu, H.-L., Li, S.-Y., Wang, Zh.-D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It has been shown that the direct synthesis is an efficient method to obtain novel homo and heterometallic mono/polynuclear coordination compounds (Kovbasyuk et al., 1997; Vassilyeva et al., 1997; Makhankova et al., 2002; Pryma et al., 2003; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005; Buvaylo et al., 2005; Nikitina et al., 2008). The title compound, [Cu(C11H18N3O2)(H2O)]Br, was obtained unintentionally as the product of an attempted synthesis of a Cu/ Mn heterometallic complex using zerovalent copper and manganese powders, ammonium bromide, salicylic aldehyde and diethylenetriamine in dimethylformamide on air.
As shown in Fig. 1, the CuII atom has a slightly distorted square-pyramidal geometry formed by one oxygen and three nitrogen atoms of the Schiff base ligand as well one oxygen atom of the coordinated water molecule. The deviation of the copper atom from the mean equatorial plane is 0.182 (2) Å. The range of Cu–N and Cu–O bond distances in the equatorial plane is 1.918 (3) - 2.018 (3) Å, while the Cu–O axial distance is 2.333 (2) Å. These data are in a good agreement with literature values (Zhu et al.,2002, 2004; He et al., 2003). The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes is 10.4 (1)°].
In the crystal, OH···O hydrogen bonds form molecular dimers. OH···Br and NH···Br hydrogen bonds link the dimers into chains along the [011] crystallographic direction (See Table containing Hydrogen-bond geometry and Fig.2).