organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o919-o920

Crystal structure of di­ethyl [(4-chloro­anilino)(4-hy­dr­oxy­phen­yl)meth­yl]phospho­nate N,N-di­methyl­formamide monosolvate

aSchool of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224051, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Nantong University, Nantong, JiangSu 226000, People's Republic of China
*Correspondence e-mail: ycwqm2012@163.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 July 2014; accepted 17 July 2014; online 1 August 2014)

In the title compound, C17H21ClNO4P·C3H7NO, the dihedral angle formed by the aromatic rings is 83.98 (7)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into double layers parallel to (011).

1. Related literature

For background to the synthesis and properties of α-amino­phospho­nic acids, see: Puius et al. (1997[Puius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo, S. C. & Zhang, Z.-Y. (1997). Proc. Natl. Acad. Sci. 94, 13420-13425.]); Hum et al. (2002[Hum, G., Lee, J. & Taylor, S. D. (2002). Bioorg. Med. Chem. Lett. 12, 3471-3474.]); Evindar et al. (2009[Evindar, G., Bernier, S. G., Kavarana, M. J., Doyle, E., Lorusso, J., Kelley, M. S., Halley, K., Hutchings, A., Wright, A. D., Saha, A. K., Hannig, G., Morgan, B. A. & Westlin, W. F. (2009). Bioorg. Med. Chem. Lett. 19, 369-372.]); Meyer et al. (2004[Meyer, F., Laaziri, A., Papini, A. M., Uziel, J. & Juge, S. (2004). Tetrahedron 60, 3593-3597.]); Kachkovskyi & Kolodiazhnyi (2007[Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron 63, 12576-12582.]); Sieńczyk & Oleksyszyn (2009[Sieńczyk, M. & Oleksyszyn, J. (2009). Curr. Med. Chem. 16, 1673-1687.]). For the structures of related compounds, see: Li et al. (2008[Li, M.-X., Zhu, M.-L. & Lu, L.-P. (2008). Acta Cryst. E64, o1178-o1179.]); Wang et al. (2012[Wang, Q. M., Zhu, M. L., Lu, L. P., Yuan, C. X., Xing, S., Fu, X. Q., Mei, Y. H. & Hang, Q. W. (2012). Eur. J. Med. Chem. 49, 354-364.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H21ClNO4P·C3H7NO

  • Mr = 442.86

  • Triclinic, [P \overline 1]

  • a = 7.7230 (3) Å

  • b = 11.6834 (5) Å

  • c = 13.4582 (5) Å

  • α = 69.872 (2)°

  • β = 88.159 (2)°

  • γ = 83.841 (2)°

  • V = 1133.58 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.960

  • 17340 measured reflections

  • 5126 independent reflections

  • 3982 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 1.04

  • 5126 reflections

  • 271 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O9i 0.82 1.87 2.693 (3) 176
N1—H1A⋯O2ii 0.79 (3) 2.19 (3) 2.977 (3) 174 (3)
C7—H7⋯O4iii 0.98 2.53 3.502 (3) 172
C9—H13⋯O2ii 0.93 2.54 3.304 (3) 140
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α-Aminophosphonic acids and relative derivatives are currently attracting a great deal of interest because of their growing applications in medicine and agriculture. It has been reported that these type of compounds have antibacterial, anticancer, antibacterial, and enzyme inhibitory properties (Puius et al., 1997; Hum et al., 2002; Evindar et al., 2009; Meyer et al., 2004), and since now many α-aminophosphonic acids have been synthesized and characterized due to these reasons (Kachkovskyi & Kolodiazhnyi, 2007; Sieńczyk & Oleksyszyn, 2009). As a further contribution to this research field, the title compound was synthesized and its crystal structure is described herein.

In the title compound (Fig. 1), the P1 atom has a distorted tetrahedral geometry involving two O atoms from ethoxy groups (O1, O3), one Cα atom (C7), and a doubly-bonded O atom(O2). The Cα atom is chiral. The C–P and PO bond lengths are comparable with those reported for similar structures (Li et al., 2008, Wang et al., 2012). The dihedral angle formed by the aromatic rings is 83.98 (7)°. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal structure, the molecules interact through O–H···O, N–H···O and C–H···O hydrogen bonds to form double layers parallel to the (0 1 1) plane (Fig. 2, Table 1).

Related literature top

For background to the synthesis and properties of α-aminophosphonic acids, see: Puius et al. (1997); Hum et al. (2002); Evindar et al. (2009); Meyer et al. (2004); Kachkovskyi & Kolodiazhnyi (2007); Sieńczyk & Oleksyszyn (2009). For the structures of related compounds, see: Li et al. (2008); Wang et al. (2012).

Experimental top

The title compound was synthesized according to a recently reported procedure (Wang et al., 2012). 4-Chlorobenzenamine (0.64 g) and 4-hydroxybenzaldehyde (0.61 g) were mixed in 20.0 mL ethanol and refluxed for 1 h, then cooled to room temperature. The light yellow solid obtained was separated and washed with ethanol and ether. Part of the solid (0.462 g) was mixed with 300 mL diethyl phosphonate in 15 mL ethanol, and the mixture refluxed for 24 h. After cooling to room temperature, the light yellow oil obtained was dissolved in 10 mL DMF. Block yellow crystals of the title compound formed from the filtrate on slow evaporation of the solvent in air after two weeks.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically idealized positions and refined as riding, with C–H = 0.93-0.97 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for hydroxyl and methyl H atoms. A rotating model was used for the hydroxyl and methyl groups. During the refinement, the C16–C17 bond length was constrained to be 1.54 (1) Å. 13 Outliers were omitted in the last cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the intra- and intermolecular hydrogen bonding network (dashed lines).
Diethyl [(4-chloroanilino)(4-hydroxyphenyl)methyl]phosphonate N,N-dimethylformamide monosolvate top
Crystal data top
C17H21ClNO4P·C3H7NOZ = 2
Mr = 442.86F(000) = 468
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7230 (3) ÅCell parameters from 9970 reflections
b = 11.6834 (5) Åθ = 2.7–27.5°
c = 13.4582 (5) ŵ = 0.27 mm1
α = 69.872 (2)°T = 296 K
β = 88.159 (2)°Block, yellow
γ = 83.841 (2)°0.40 × 0.20 × 0.15 mm
V = 1133.58 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5126 independent reflections
Radiation source: fine-focus sealed tube3982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 109
Tmin = 0.937, Tmax = 0.960k = 1513
17340 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0923P)2 + 0.5091P]
where P = (Fo2 + 2Fc2)/3
5126 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C17H21ClNO4P·C3H7NOγ = 83.841 (2)°
Mr = 442.86V = 1133.58 (8) Å3
Triclinic, P1Z = 2
a = 7.7230 (3) ÅMo Kα radiation
b = 11.6834 (5) ŵ = 0.27 mm1
c = 13.4582 (5) ÅT = 296 K
α = 69.872 (2)°0.40 × 0.20 × 0.15 mm
β = 88.159 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3982 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.960Rint = 0.022
17340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
5126 reflectionsΔρmin = 0.41 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3710 (3)0.80977 (18)0.82727 (15)0.0377 (4)
C20.3340 (3)0.93464 (19)0.77767 (17)0.0432 (5)
H20.42420.98470.76330.052*
C30.0306 (3)0.9130 (2)0.76955 (17)0.0449 (5)
C40.1652 (3)0.9867 (2)0.74897 (18)0.0473 (5)
H4A0.14251.07100.71600.057*
C50.0659 (3)0.7874 (2)0.81811 (19)0.0486 (5)
H50.02410.73730.83170.058*
C60.2337 (3)0.73708 (19)0.84612 (18)0.0456 (5)
H60.25610.65270.87840.055*
C70.5553 (3)0.75408 (18)0.86193 (15)0.0394 (4)
H70.63310.81800.83050.047*
C80.6226 (2)0.66491 (19)0.72271 (16)0.0394 (4)
C90.6075 (3)0.5653 (2)0.69055 (18)0.0459 (5)
H130.59040.48970.74100.055*
C100.6176 (3)0.5765 (2)0.58476 (19)0.0508 (5)
H90.60670.50910.56450.061*
C110.6438 (3)0.6878 (2)0.50973 (17)0.0499 (5)
C120.6600 (3)0.7882 (2)0.53900 (18)0.0534 (6)
H110.67820.86310.48790.064*
C130.6491 (3)0.7771 (2)0.64451 (18)0.0487 (5)
H120.65950.84520.66390.058*
C140.3741 (5)0.8376 (4)1.1019 (2)0.0828 (9)
H14A0.33690.75731.13940.099*
H14B0.41710.86851.15370.099*
C150.2261 (5)0.9194 (3)1.0463 (3)0.0879 (10)
H15A0.26380.99781.00600.132*
H15B0.14010.92921.09660.132*
H15C0.17670.88530.99950.132*
C160.8504 (6)0.6584 (6)1.1231 (3)0.144 (2)
H16A0.86210.73171.13970.173*
H16B0.77230.60981.17450.173*
C171.0151 (6)0.5904 (5)1.1311 (4)0.150 (2)
H17A1.00220.51381.12190.225*
H17B1.06480.57511.19950.225*
H17C1.09040.63611.07720.225*
C190.8263 (6)0.1600 (4)0.4743 (3)0.0995 (11)
H19A0.93520.11520.46770.149*
H19B0.75660.17640.41220.149*
H19C0.76580.11230.53550.149*
C200.8875 (5)0.3742 (4)0.3889 (3)0.0956 (11)
H20A0.90540.44550.40570.143*
H20B0.78770.39190.34330.143*
H20C0.98840.35150.35370.143*
C210.8634 (4)0.2850 (3)0.5803 (3)0.0739 (8)
H210.88680.36080.58180.089*
Cl10.65380 (12)0.70206 (8)0.37615 (5)0.0787 (3)
N10.6162 (3)0.65004 (18)0.82953 (14)0.0452 (4)
H1A0.589 (3)0.584 (3)0.862 (2)0.051 (7)*
N20.8584 (3)0.2738 (2)0.4857 (2)0.0673 (6)
O10.5143 (2)0.82636 (17)1.02988 (14)0.0611 (5)
O20.4857 (3)0.60211 (17)1.06464 (14)0.0713 (6)
O30.7772 (3)0.6924 (2)1.01916 (15)0.0798 (6)
O40.1380 (2)0.95971 (17)0.74345 (16)0.0611 (5)
H40.14331.03460.71710.092*
O90.8404 (3)0.2062 (2)0.66580 (19)0.0866 (7)
P10.57543 (8)0.70788 (5)1.00447 (4)0.04728 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (10)0.0406 (10)0.0315 (9)0.0111 (8)0.0061 (7)0.0118 (8)
C20.0443 (11)0.0399 (10)0.0437 (11)0.0144 (8)0.0053 (8)0.0094 (9)
C30.0425 (11)0.0519 (12)0.0413 (11)0.0078 (9)0.0032 (8)0.0167 (9)
C40.0526 (12)0.0361 (10)0.0484 (12)0.0072 (9)0.0033 (9)0.0078 (9)
C50.0446 (12)0.0495 (12)0.0526 (12)0.0193 (9)0.0080 (9)0.0150 (10)
C60.0527 (12)0.0344 (10)0.0473 (12)0.0129 (9)0.0071 (9)0.0092 (9)
C70.0430 (11)0.0397 (10)0.0319 (9)0.0105 (8)0.0056 (8)0.0064 (8)
C80.0341 (10)0.0431 (11)0.0374 (10)0.0031 (8)0.0043 (7)0.0096 (8)
C90.0459 (11)0.0419 (11)0.0443 (11)0.0073 (9)0.0040 (9)0.0073 (9)
C100.0540 (13)0.0508 (13)0.0513 (13)0.0111 (10)0.0028 (10)0.0208 (10)
C110.0511 (12)0.0614 (14)0.0377 (11)0.0103 (10)0.0040 (9)0.0165 (10)
C120.0669 (15)0.0486 (12)0.0400 (11)0.0150 (11)0.0088 (10)0.0073 (9)
C130.0624 (14)0.0416 (11)0.0415 (11)0.0117 (10)0.0084 (10)0.0122 (9)
C140.094 (2)0.101 (2)0.0568 (16)0.0018 (19)0.0125 (15)0.0368 (17)
C150.093 (2)0.089 (2)0.083 (2)0.0007 (19)0.0159 (19)0.0359 (19)
C160.090 (3)0.240 (6)0.073 (3)0.012 (3)0.026 (2)0.021 (3)
C170.089 (3)0.175 (5)0.120 (4)0.013 (3)0.028 (3)0.036 (3)
C190.126 (3)0.098 (3)0.082 (2)0.023 (2)0.005 (2)0.035 (2)
C200.089 (2)0.089 (2)0.083 (2)0.0010 (19)0.0005 (19)0.0003 (19)
C210.0759 (19)0.0589 (16)0.084 (2)0.0154 (14)0.0077 (16)0.0272 (16)
Cl10.1139 (6)0.0865 (5)0.0423 (3)0.0296 (4)0.0097 (3)0.0257 (3)
N10.0548 (11)0.0377 (10)0.0362 (9)0.0040 (8)0.0068 (8)0.0046 (7)
N20.0594 (13)0.0660 (14)0.0676 (15)0.0037 (10)0.0001 (11)0.0146 (12)
O10.0711 (11)0.0623 (11)0.0590 (10)0.0183 (9)0.0095 (8)0.0298 (9)
O20.1158 (16)0.0534 (10)0.0411 (9)0.0282 (10)0.0133 (9)0.0070 (8)
O30.0603 (12)0.1195 (18)0.0472 (10)0.0072 (11)0.0112 (8)0.0166 (11)
O40.0439 (9)0.0629 (11)0.0720 (12)0.0056 (7)0.0031 (8)0.0172 (9)
O90.1075 (17)0.0732 (14)0.0685 (14)0.0198 (12)0.0008 (12)0.0195 (11)
P10.0558 (4)0.0495 (3)0.0333 (3)0.0099 (3)0.0030 (2)0.0090 (2)
Geometric parameters (Å, º) top
C1—C21.381 (3)C14—H14A0.9700
C1—C61.392 (3)C14—H14B0.9700
C1—C71.517 (3)C15—H15A0.9600
C2—C41.386 (3)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—O41.365 (3)C16—C171.412 (6)
C3—C41.381 (3)C16—O31.434 (4)
C3—C51.386 (3)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.372 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—N11.455 (3)C19—N21.438 (4)
C7—P11.812 (2)C19—H19A0.9600
C7—H70.9800C19—H19B0.9600
C8—N11.387 (3)C19—H19C0.9600
C8—C91.391 (3)C20—N21.453 (4)
C8—C131.401 (3)C20—H20A0.9600
C9—C101.384 (3)C20—H20B0.9600
C9—H130.9300C20—H20C0.9600
C10—C111.375 (3)C21—O91.222 (4)
C10—H90.9300C21—N21.326 (4)
C11—C121.379 (3)C21—H210.9300
C11—Cl11.747 (2)N1—H1A0.79 (3)
C12—C131.381 (3)O1—P11.5592 (18)
C12—H110.9300O2—P11.4568 (18)
C13—H120.9300O3—P11.560 (2)
C14—C151.452 (5)O4—H40.8200
C14—O11.455 (3)
C2—C1—C6117.98 (19)C14—C15—H15A109.5
C2—C1—C7120.88 (17)C14—C15—H15B109.5
C6—C1—C7121.12 (18)H15A—C15—H15B109.5
C1—C2—C4121.24 (19)C14—C15—H15C109.5
C1—C2—H2119.4H15A—C15—H15C109.5
C4—C2—H2119.4H15B—C15—H15C109.5
O4—C3—C4122.1 (2)C17—C16—O3111.6 (4)
O4—C3—C5118.2 (2)C17—C16—H16A109.3
C4—C3—C5119.7 (2)O3—C16—H16A109.3
C3—C4—C2119.8 (2)C17—C16—H16B109.3
C3—C4—H4A120.1O3—C16—H16B109.3
C2—C4—H4A120.1H16A—C16—H16B108.0
C6—C5—C3119.93 (19)C16—C17—H17A109.5
C6—C5—H5120.0C16—C17—H17B109.5
C3—C5—H5120.0H17A—C17—H17B109.5
C5—C6—C1121.4 (2)C16—C17—H17C109.5
C5—C6—H6119.3H17A—C17—H17C109.5
C1—C6—H6119.3H17B—C17—H17C109.5
N1—C7—C1114.86 (17)N2—C19—H19A109.5
N1—C7—P1108.79 (13)N2—C19—H19B109.5
C1—C7—P1110.17 (13)H19A—C19—H19B109.5
N1—C7—H7107.6N2—C19—H19C109.5
C1—C7—H7107.6H19A—C19—H19C109.5
P1—C7—H7107.6H19B—C19—H19C109.5
N1—C8—C9119.85 (19)N2—C20—H20A109.5
N1—C8—C13122.3 (2)N2—C20—H20B109.5
C9—C8—C13117.79 (19)H20A—C20—H20B109.5
C10—C9—C8121.2 (2)N2—C20—H20C109.5
C10—C9—H13119.4H20A—C20—H20C109.5
C8—C9—H13119.4H20B—C20—H20C109.5
C11—C10—C9119.7 (2)O9—C21—N2126.9 (3)
C11—C10—H9120.1O9—C21—H21116.5
C9—C10—H9120.1N2—C21—H21116.5
C10—C11—C12120.5 (2)C8—N1—C7119.49 (17)
C10—C11—Cl1119.60 (19)C8—N1—H1A109 (2)
C12—C11—Cl1119.88 (18)C7—N1—H1A120.2 (19)
C11—C12—C13119.8 (2)C21—N2—C19121.2 (3)
C11—C12—H11120.1C21—N2—C20122.2 (3)
C13—C12—H11120.1C19—N2—C20116.6 (3)
C12—C13—C8121.0 (2)C14—O1—P1125.2 (2)
C12—C13—H12119.5C16—O3—P1119.8 (2)
C8—C13—H12119.5C3—O4—H4109.5
C15—C14—O1111.8 (3)O2—P1—O1114.07 (11)
C15—C14—H14A109.2O2—P1—O3115.77 (13)
O1—C14—H14A109.2O1—P1—O3104.04 (12)
C15—C14—H14B109.2O2—P1—C7115.27 (11)
O1—C14—H14B109.2O1—P1—C7104.53 (10)
H14A—C14—H14B107.9O3—P1—C7101.57 (10)
C6—C1—C2—C41.1 (3)N1—C8—C13—C12178.1 (2)
C7—C1—C2—C4177.80 (19)C9—C8—C13—C120.1 (3)
O4—C3—C4—C2179.6 (2)C9—C8—N1—C7152.9 (2)
C5—C3—C4—C20.5 (3)C13—C8—N1—C729.0 (3)
C1—C2—C4—C30.3 (3)C1—C7—N1—C859.6 (2)
O4—C3—C5—C6179.6 (2)P1—C7—N1—C8176.39 (16)
C4—C3—C5—C60.5 (3)O9—C21—N2—C191.1 (5)
C3—C5—C6—C10.3 (3)O9—C21—N2—C20179.8 (3)
C2—C1—C6—C51.1 (3)C15—C14—O1—P1112.5 (3)
C7—C1—C6—C5177.8 (2)C17—C16—O3—P1150.0 (4)
C2—C1—C7—N1130.6 (2)C14—O1—P1—O23.4 (3)
C6—C1—C7—N150.6 (2)C14—O1—P1—O3130.5 (2)
C2—C1—C7—P1106.19 (19)C14—O1—P1—C7123.4 (2)
C6—C1—C7—P172.6 (2)C16—O3—P1—O255.8 (4)
N1—C8—C9—C10178.4 (2)C16—O3—P1—O170.2 (4)
C13—C8—C9—C100.3 (3)C16—O3—P1—C7178.5 (4)
C8—C9—C10—C110.3 (3)N1—C7—P1—O256.14 (19)
C9—C10—C11—C120.0 (4)C1—C7—P1—O270.60 (18)
C9—C10—C11—Cl1179.24 (18)N1—C7—P1—O1177.83 (14)
C10—C11—C12—C130.3 (4)C1—C7—P1—O155.43 (16)
Cl1—C11—C12—C13178.91 (19)N1—C7—P1—O369.84 (17)
C11—C12—C13—C80.3 (4)C1—C7—P1—O3163.43 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9i0.821.872.693 (3)176
N1—H1A···O2ii0.79 (3)2.19 (3)2.977 (3)174 (3)
C7—H7···O4iii0.982.533.502 (3)172
C9—H13···O2ii0.932.543.304 (3)140
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O9i0.821.872.693 (3)176
N1—H1A···O2ii0.79 (3)2.19 (3)2.977 (3)174 (3)
C7—H7···O4iii0.982.533.502 (3)172
C9—H13···O2ii0.932.543.304 (3)140
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation for Young Scientists of China (grant No. 21301150), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 13KJB150037), the Foundation of Jiangsu Provincial Key Laboratory of Solonchak (grant No. JKLBS2012022), the Doctor and Professor Foundation of Yancheng Teachers' University (grant No. 12YSYJB0117) and the Practice Innovation Training Program Projects for the Jiangsu College Students (grant Nos. 201310324034Y and 201410324038Y).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvindar, G., Bernier, S. G., Kavarana, M. J., Doyle, E., Lorusso, J., Kelley, M. S., Halley, K., Hutchings, A., Wright, A. D., Saha, A. K., Hannig, G., Morgan, B. A. & Westlin, W. F. (2009). Bioorg. Med. Chem. Lett. 19, 369–372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHum, G., Lee, J. & Taylor, S. D. (2002). Bioorg. Med. Chem. Lett. 12, 3471–3474.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron 63, 12576–12582.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, M.-X., Zhu, M.-L. & Lu, L.-P. (2008). Acta Cryst. E64, o1178–o1179.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, F., Laaziri, A., Papini, A. M., Uziel, J. & Juge, S. (2004). Tetrahedron 60, 3593–3597.  Web of Science CrossRef CAS Google Scholar
First citationPuius, Y. A., Zhao, Y., Sullivan, M., Lawrence, D. S., Almo, S. C. & Zhang, Z.-Y. (1997). Proc. Natl. Acad. Sci. 94, 13420–13425.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieńczyk, M. & Oleksyszyn, J. (2009). Curr. Med. Chem. 16, 1673–1687.  Web of Science PubMed Google Scholar
First citationWang, Q. M., Zhu, M. L., Lu, L. P., Yuan, C. X., Xing, S., Fu, X. Q., Mei, Y. H. & Hang, Q. W. (2012). Eur. J. Med. Chem. 49, 354–364.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o919-o920
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds