research communications
H-pyrrolidizine-3,11′-indeno[1,2-b]quinoxaline]
of 1-ferrocenyl-2-(4-methylbenzoyl)spiro[11aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com
In the title compound, [Fe(C5H5)(C34H28N3O)], the four-fused-rings system of the 11H-indeno[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å] and forms a dihedral angle of 37.25 (6)° with the plane of the benzene ring of the methylbenzoyl group. Both pyrrolidine rings adopt a twist conformation. An intramolecular C—H⋯O hydrogen bond is observed. In the crystal, molecules are linked by C—H⋯O hydrogen bonds and weak C—H⋯π interactions, forming double chains extending parallel to the c axis.
Keywords: crystal structure; ferrocenyl; pyrrolidizine; quinoxaline; hydrogen bonds.
CCDC reference: 1017369
1. Chemical Context
Spirooxindoles are an important class of naturally occurring substances characterized by highly pronounced biological properties (Sureshbabu & Raghunathan, 2008). Ferrocene derivatives have antimalarial (Biot et al., 2004) and antibacterial (Chohan, 2002) activities. The use of ferrocene in bio-organometallic chemistry has promising applications since ferrocene is a stable non-toxic compound and has good redox properties (Fouda et al., 2007). Ferrocenyloxindoles have also been found to have anticancer (Silva et al., 2010) and antiproliferative activities (Gasser et al., 2011).
The synthesis of novel ferrocenyl-spiro-indanedione-N-methylpyrrolidines by employing various unusual ferrocene derivatives as efficient 2π-components in 1,3-dipolar cycloaddition reactions of demonstrate that ferrocene-derived dipolarophiles can further be exploited for the synthesis of a variety of complex heterocycles through cycloaddition reactions (Sureshbabu et al., 2009). A wide range of substituted pyrrolizidine scaffolds offers a high level of functional, structural and stereochemical diversity. It has been demonstrated that multicomponent reactions (MCR) could be used for the synthesis of novel ferrocene-grafted dispiropyrrolidine and pyrrolizidine scaffolds through one-pot three-component intermolecular [3 + 2] cycloaddition of with an unusual ferrocene Baylis–Hillman adduct (Kathiravan & Raghunathan, 2009). The one-pot four-component cycloaddition reaction method was used to synthesize substituted pyrrolizidines containing ferrocene and a spiro-indenoquinoxaline moiety of biological significance (Sureshbabu et al., 2012). In view of the importance of this class of compounds, the synthesis of the title compound was undertaken and its is reported herein.
2. Structural commentary
In the title compound (Fig. 1), the four-fused-rings system of the 11H-indeno[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å for C13] and forms a dihedral angle of 37.25 (6)° with the C33–C38 benzene ring of the methylbenzoyl group. In the fused pyrrolidine system, both five-membered rings adopt a twist conformation, as indicated by the puckering parameters (Cremer & Pople, 1975) θ = 0.382 (3) Å, φ = 107.1 (4)° for C19/C18/C17/C16/N3 and θ = 0.359 (2) Å, φ = 106.1 (3)° for C19/C20/C21/C7/N3. The dihedral angle between the least-squares mean planes through the pyrrolidine rings is 56.89 (7)°. The mean plane through the C19/C20/C21/C7/N3 pyrrolidine ring is nearly orthogonal to the C5/C6/C7/C8/C9 cyclopentane ring, forming a dihedral angle of 88.84 (8)°. The dihedral angle between the cyclopentane rings in the ferrocene fragment is 2.18 (8)°. Bond lengths and angles are not unusual and in good agreement with those recently reported for the related compound 2-(4-bromobenzoyl)-1-ferrocenylspiro[11H-pyrrolidizine-3,11′-indeno[1,2-b]quinoxaline] (Suhitha et al., 2013). The molecular conformation is stabilized by an intramolecular C—H⋯O hydrogen bond (Table 1).
3. Supramolecular features
In the c axis by intermolecular non-classical C—H⋯O hydrogen bonds and weak C—H⋯π interactions (Table 1) involving H atoms of the cyclopentadienyl groups as donors (Fig. 2).
molecules are linked into double chains running parallel to the4. Synthesis and crystallization
Ninhydrin (1 mmol) and 1,2-phenylenediamine (1 mmol) were mixed and stirred with methanol (10 ml) for 10 min. To this mixture, proline (1 mmol) and 1-ferrocenyl-3-(4-methylbenzoyl)prop-2-ene dipolarophile (1 mmol) were added and refluxed up to the end of the reaction as observed by v/v). Single crystals suitable for the X-ray were obtained by slow evaporation of the solvent at room temperature.
The solvent was removed from the mixture under reduced pressure and the crude product was obtained using The crude extract was purified by petroleum ether and ethyl acetate (4:15. details
Crystal data, data collection and structure . All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. DELU restraints were applied to atoms C24 and C25.
details are summarized in Table 2Supporting information
CCDC reference: 1017369
10.1107/S1600536814017644/rz5131sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814017644/rz5131Isup2.hkl
Spirooxindoles are an important class of naturally occurring substances characterized by highly pronounced biological properties (Sureshbabu & Raghunathan, 2008). Ferrocene derivatives have antimalarial (Biot et al., 2004) and antibacterial (Chohan, 2002) activities. The use of ferrocene in bio-organometallic chemistry has promising applications since ferrocene is a stable non-toxic compound and has good redox properties (Fouda et al., 2007). Ferrocenyloxindoles have also been found to have anticancer (Silva et al., 2010) and antiproliferative activities (Gasser et al., 2011). The synthesis of novel ferrocenyl-spiro-indanedione-N-methylpyrrolidines by employing various unusual ferrocene derivatives as efficient 2π-components in 1,3-dipolar cycloaddition reactions of demonstrate that ferrocene-derived dipolarophiles can further be exploited for the synthesis of a variety of complex heterocycles through cycloaddition reactions (Sureshbabu et al., 2009). A wide range of substituted pyrrolizidine scaffolds offers a high level of functional, structural and stereochemical diversity. It was demonstrated that multicomponent reactions (MCR) could be used for synthesizing novel ferrocene-grafted dispiropyrrolidine and pyrrolizidine scaffolds through one-pot three-component intermolecular [3+2] cycloaddition of with an unusual ferrocene Baylis–Hillman adduct (Kathiravan & Raghunathan, 2009). The one-pot four-component cycloaddition reaction method was used to synthesize substituted pyrrolizidines containing ferrocene and a spiro-indenoquinoxaline moiety of biological significance (Sureshbabu et al., 2012). In view of the importance of this class of compounds, the synthesis of the title compound was undertaken and its is reported herein.
In the title compound (Fig. 1), the four-fused-rings system of the 11H-indeno[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å for C13] and forms a dihedral angle of 37.25 (6)° with the C33–C38 benzene ring of the methylbenzoyl group. In the fused pyrrolidine system, both five-membered rings adopt a twist conformation, as indicated by the puckering parameters (Cremer & Pople, 1975) θ = 0.382 (3) Å, ϕ = 107.1 (4)° for C19/C18/C17/C16/N3 and θ = 0.359 (2) Å, ϕ = 106.1 (3)° for C19/C20/C21/C7/N3. The dihedral angle between the least-squares mean planes through the pyrrolidine rings is 56.89 (7)°. The mean plane through the C19/C20/C21/C7/N3 pyrrolidine ring is nearly orthogonal to the C5/C6/C7/C8/C9 cyclopentane ring, forming a dihedral angle of 88.84 (8)°. The dihedral angle between the cyclopentane rings in the ferrocene fragment is 2.18 (8)°. Bond lengths and angles are not unusual and in good agreement with those recently reported for the related compound 2-(4-bromobenzoyl)-1-ferrocenylspiro[11H-pyrrolidizine-3,11'-indeno[1,2-b]quinoxaline] (Suhitha et al., 2013). The is stabilized by an intramolecular C—H···O hydrogen bond (Table 1).
In the π interactions (Table 1) involving H atoms of the cyclopentadienyl groups as donors (Fig. 2).
molecules are linked into double chains running parallel to the c axis by intermolecular non-classical C—H···O hydrogen bonds and weak C—H···Ninhydrin (1 mmol) and 1,2-phenylenediamine (1 mmol) were mixed and stirred with methanol (10 ml) for 10 min. To this mixture, proline (1 mmol) and 1-ferrocenyl-3-(4-methylbenzoyl)prop-2-ene dipolarophile (1 mmol) were added and refluxed up to the end of the reaction as observed by
The solvent was removed from the mixture under reduced pressure and the crude product was obtained using The crude extract was purified by petroleum ether and ethyl acetate (4:1 v/v). Single crystals suitable for the X-ray were obtained by slow evaporation of the solvent at room temperature.Crystal data, data collection and structure
details are summarized in Table 2. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. DELU restraints were applied to atoms C24 and C25.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. Partial crystal packing of the title compound, showing the formation of a double chain running parallel to the c axis via C—H···O hydrogen bonds (violet dashed lines) and C—H···π interactions (red dashed lines). H atoms not involved in hydrogen-bond interactions have been omitted. |
[Fe(C5H5)(C34H28N3O)] | Z = 4 |
Mr = 615.53 | F(000) = 1288 |
Monoclinic, Cc | Dx = 1.341 Mg m−3 |
Hall symbol: C -2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0017 (4) Å | θ = 4.8–56.4° |
b = 30.2487 (10) Å | µ = 0.53 mm−1 |
c = 9.3597 (3) Å | T = 293 K |
β = 116.179 (1)° | Block, colourless |
V = 3049.35 (17) Å3 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 5362 independent reflections |
Radiation source: fine-focus sealed tube | 5128 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Bruker axs kappa apex2 CCD Diffractometer scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −14→14 |
Tmin = 0.836, Tmax = 0.879 | k = −35→35 |
17682 measured reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0347P)2 + 0.3631P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max = 0.002 |
S = 1.03 | Δρmax = 0.16 e Å−3 |
5362 reflections | Δρmin = −0.15 e Å−3 |
399 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
3 restraints | Extinction coefficient: 0.00070 (15) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2669 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.007 (9) |
[Fe(C5H5)(C34H28N3O)] | V = 3049.35 (17) Å3 |
Mr = 615.53 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 12.0017 (4) Å | µ = 0.53 mm−1 |
b = 30.2487 (10) Å | T = 293 K |
c = 9.3597 (3) Å | 0.35 × 0.30 × 0.25 mm |
β = 116.179 (1)° |
Bruker Kappa APEXII CCD diffractometer | 5362 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 5128 reflections with I > 2σ(I) |
Tmin = 0.836, Tmax = 0.879 | Rint = 0.021 |
17682 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.062 | Δρmax = 0.16 e Å−3 |
S = 1.03 | Δρmin = −0.15 e Å−3 |
5362 reflections | Absolute structure: Flack (1983), 2669 Friedel pairs |
399 parameters | Absolute structure parameter: −0.007 (9) |
3 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.01108 (2) | 0.077233 (8) | 0.28428 (2) | 0.03569 (8) | |
O1 | −0.07741 (15) | 0.06919 (5) | 0.67565 (18) | 0.0530 (4) | |
N1 | −0.30744 (14) | 0.19423 (5) | 0.21696 (19) | 0.0373 (3) | |
N2 | −0.47392 (15) | 0.17673 (6) | −0.10980 (19) | 0.0427 (4) | |
N3 | −0.39342 (15) | 0.13086 (5) | 0.39825 (19) | 0.0398 (4) | |
C1 | −0.47492 (19) | 0.04151 (7) | 0.1670 (3) | 0.0483 (5) | |
H1 | −0.4398 | 0.0283 | 0.2669 | 0.058* | |
C2 | −0.5562 (2) | 0.01800 (8) | 0.0334 (3) | 0.0567 (6) | |
H2 | −0.5768 | −0.0110 | 0.0449 | 0.068* | |
C3 | −0.6066 (2) | 0.03731 (8) | −0.1163 (3) | 0.0567 (6) | |
H3 | −0.6608 | 0.0211 | −0.2038 | 0.068* | |
C4 | −0.57798 (19) | 0.07972 (7) | −0.1372 (3) | 0.0469 (5) | |
H4 | −0.6109 | 0.0923 | −0.2381 | 0.056* | |
C5 | −0.49823 (16) | 0.10371 (7) | −0.0040 (2) | 0.0370 (4) | |
C6 | −0.44732 (16) | 0.08500 (6) | 0.1482 (2) | 0.0352 (4) | |
C7 | −0.35942 (16) | 0.11702 (6) | 0.2715 (2) | 0.0332 (4) | |
C8 | −0.36774 (15) | 0.15702 (6) | 0.1682 (2) | 0.0326 (4) | |
C9 | −0.44990 (16) | 0.14829 (6) | 0.0059 (2) | 0.0351 (4) | |
C10 | −0.40833 (18) | 0.21570 (7) | −0.0633 (2) | 0.0419 (5) | |
C11 | −0.4220 (2) | 0.24758 (8) | −0.1796 (3) | 0.0579 (6) | |
H11 | −0.4772 | 0.2427 | −0.2856 | 0.070* | |
C12 | −0.3537 (2) | 0.28584 (8) | −0.1361 (3) | 0.0646 (7) | |
H12 | −0.3623 | 0.3067 | −0.2133 | 0.078* | |
C13 | −0.2712 (3) | 0.29375 (8) | 0.0231 (3) | 0.0629 (6) | |
H13 | −0.2250 | 0.3197 | 0.0504 | 0.075* | |
C14 | −0.2576 (2) | 0.26398 (7) | 0.1388 (3) | 0.0521 (5) | |
H14 | −0.2034 | 0.2699 | 0.2445 | 0.063* | |
C15 | −0.32574 (17) | 0.22426 (6) | 0.0982 (2) | 0.0400 (4) | |
C16 | −0.4350 (3) | 0.09612 (10) | 0.4739 (3) | 0.0665 (7) | |
H16A | −0.3873 | 0.0692 | 0.4885 | 0.080* | |
H16B | −0.5224 | 0.0896 | 0.4115 | 0.080* | |
C17 | −0.4115 (3) | 0.11636 (12) | 0.6293 (4) | 0.0865 (10) | |
H17A | −0.4050 | 0.0938 | 0.7062 | 0.104* | |
H17B | −0.4776 | 0.1367 | 0.6173 | 0.104* | |
C18 | −0.2913 (2) | 0.14035 (10) | 0.6803 (3) | 0.0665 (7) | |
H18A | −0.2226 | 0.1221 | 0.7513 | 0.080* | |
H18B | −0.2917 | 0.1676 | 0.7349 | 0.080* | |
C19 | −0.28009 (18) | 0.15018 (7) | 0.5261 (2) | 0.0410 (4) | |
H19 | −0.2823 | 0.1823 | 0.5111 | 0.049* | |
C20 | −0.16588 (16) | 0.13083 (6) | 0.5049 (2) | 0.0321 (4) | |
H20 | −0.1249 | 0.1552 | 0.4778 | 0.039* | |
C21 | −0.22308 (16) | 0.09977 (6) | 0.3613 (2) | 0.0313 (4) | |
H21 | −0.2252 | 0.0698 | 0.4001 | 0.038* | |
C22 | −0.16107 (16) | 0.09780 (7) | 0.2525 (2) | 0.0349 (4) | |
C23 | −0.17042 (19) | 0.06193 (9) | 0.1483 (3) | 0.0512 (6) | |
H23 | −0.2096 | 0.0332 | 0.1445 | 0.061* | |
C24 | −0.1133 (2) | 0.07513 (9) | 0.0524 (3) | 0.0606 (7) | |
H24 | −0.1058 | 0.0569 | −0.0295 | 0.073* | |
C25 | −0.0684 (2) | 0.11832 (9) | 0.0928 (3) | 0.0581 (6) | |
H25 | −0.0247 | 0.1355 | 0.0444 | 0.070* | |
C26 | −0.09819 (18) | 0.13257 (7) | 0.2151 (3) | 0.0433 (5) | |
H26 | −0.0769 | 0.1614 | 0.2680 | 0.052* | |
C27 | 0.0989 (2) | 0.04430 (9) | 0.4942 (3) | 0.0587 (6) | |
H27 | 0.0606 | 0.0336 | 0.5608 | 0.070* | |
C28 | 0.1084 (2) | 0.02060 (7) | 0.3691 (3) | 0.0622 (7) | |
H28 | 0.0777 | −0.0094 | 0.3345 | 0.075* | |
C29 | 0.1692 (2) | 0.04753 (7) | 0.3035 (3) | 0.0549 (6) | |
H29 | 0.1885 | 0.0397 | 0.2153 | 0.066* | |
C30 | 0.19731 (19) | 0.08743 (8) | 0.3866 (3) | 0.0512 (6) | |
H30 | 0.2394 | 0.1126 | 0.3657 | 0.061* | |
C31 | 0.1536 (2) | 0.08591 (9) | 0.5048 (3) | 0.0531 (6) | |
H31 | 0.1608 | 0.1094 | 0.5804 | 0.064* | |
C32 | −0.07122 (18) | 0.10845 (6) | 0.6539 (2) | 0.0347 (4) | |
C33 | 0.02945 (18) | 0.13584 (6) | 0.7763 (2) | 0.0351 (4) | |
C34 | 0.1321 (2) | 0.11481 (7) | 0.8939 (2) | 0.0437 (5) | |
H34 | 0.1369 | 0.0841 | 0.8950 | 0.052* | |
C35 | 0.22726 (19) | 0.13901 (8) | 1.0094 (3) | 0.0486 (5) | |
H35 | 0.2955 | 0.1244 | 1.0863 | 0.058* | |
C36 | 0.2222 (2) | 0.18463 (8) | 1.0119 (3) | 0.0515 (5) | |
C37 | 0.1191 (2) | 0.20554 (7) | 0.8961 (3) | 0.0575 (6) | |
H37 | 0.1135 | 0.2362 | 0.8967 | 0.069* | |
C38 | 0.0244 (2) | 0.18150 (6) | 0.7795 (3) | 0.0479 (5) | |
H38 | −0.0435 | 0.1962 | 0.7024 | 0.057* | |
C39 | 0.3290 (2) | 0.21089 (11) | 1.1340 (3) | 0.0760 (8) | |
H39A | 0.3816 | 0.1916 | 1.2184 | 0.114* | |
H39B | 0.2971 | 0.2338 | 1.1767 | 0.114* | |
H39C | 0.3760 | 0.2239 | 1.0844 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.03174 (13) | 0.04076 (14) | 0.02999 (13) | 0.00726 (12) | 0.00945 (10) | −0.00137 (13) |
O1 | 0.0648 (10) | 0.0386 (8) | 0.0384 (8) | −0.0019 (7) | 0.0072 (8) | 0.0075 (6) |
N1 | 0.0373 (8) | 0.0346 (8) | 0.0374 (8) | 0.0060 (7) | 0.0141 (7) | 0.0034 (7) |
N2 | 0.0392 (9) | 0.0513 (9) | 0.0333 (9) | 0.0067 (7) | 0.0120 (7) | 0.0089 (7) |
N3 | 0.0347 (8) | 0.0528 (10) | 0.0333 (8) | 0.0024 (7) | 0.0161 (7) | 0.0008 (7) |
C1 | 0.0442 (12) | 0.0484 (11) | 0.0473 (12) | −0.0071 (9) | 0.0156 (10) | 0.0039 (10) |
C2 | 0.0516 (13) | 0.0498 (13) | 0.0662 (15) | −0.0198 (10) | 0.0235 (12) | −0.0083 (11) |
C3 | 0.0470 (13) | 0.0692 (15) | 0.0490 (14) | −0.0231 (11) | 0.0167 (11) | −0.0176 (12) |
C4 | 0.0345 (10) | 0.0655 (14) | 0.0357 (11) | −0.0089 (10) | 0.0110 (9) | −0.0044 (10) |
C5 | 0.0260 (9) | 0.0473 (11) | 0.0364 (10) | −0.0005 (8) | 0.0127 (8) | −0.0006 (8) |
C6 | 0.0242 (9) | 0.0455 (11) | 0.0333 (10) | −0.0003 (7) | 0.0105 (8) | −0.0007 (8) |
C7 | 0.0310 (9) | 0.0354 (9) | 0.0319 (9) | 0.0003 (7) | 0.0127 (8) | 0.0009 (8) |
C8 | 0.0249 (8) | 0.0398 (10) | 0.0308 (9) | 0.0056 (7) | 0.0102 (7) | 0.0019 (8) |
C9 | 0.0265 (9) | 0.0458 (11) | 0.0317 (9) | 0.0036 (7) | 0.0117 (8) | 0.0029 (8) |
C10 | 0.0388 (10) | 0.0432 (11) | 0.0455 (12) | 0.0110 (9) | 0.0202 (9) | 0.0122 (9) |
C11 | 0.0572 (14) | 0.0612 (14) | 0.0539 (14) | 0.0146 (11) | 0.0231 (12) | 0.0213 (11) |
C12 | 0.0754 (16) | 0.0483 (13) | 0.0813 (19) | 0.0135 (12) | 0.0446 (15) | 0.0291 (13) |
C13 | 0.0687 (16) | 0.0388 (11) | 0.0858 (19) | 0.0051 (11) | 0.0383 (15) | 0.0140 (12) |
C14 | 0.0532 (12) | 0.0374 (11) | 0.0643 (14) | 0.0050 (9) | 0.0246 (11) | 0.0031 (10) |
C15 | 0.0372 (10) | 0.0383 (10) | 0.0472 (12) | 0.0099 (8) | 0.0211 (9) | 0.0050 (9) |
C16 | 0.0757 (17) | 0.0808 (17) | 0.0611 (16) | −0.0188 (14) | 0.0467 (15) | −0.0029 (13) |
C17 | 0.098 (2) | 0.120 (3) | 0.0646 (19) | −0.0150 (19) | 0.0563 (18) | 0.0006 (17) |
C18 | 0.0567 (14) | 0.110 (2) | 0.0376 (13) | 0.0111 (14) | 0.0251 (11) | −0.0015 (13) |
C19 | 0.0408 (10) | 0.0474 (11) | 0.0337 (10) | 0.0069 (9) | 0.0155 (9) | −0.0003 (9) |
C20 | 0.0350 (9) | 0.0329 (9) | 0.0258 (9) | −0.0009 (7) | 0.0109 (8) | 0.0020 (7) |
C21 | 0.0291 (9) | 0.0329 (9) | 0.0274 (9) | 0.0020 (7) | 0.0082 (7) | 0.0031 (7) |
C22 | 0.0266 (9) | 0.0447 (10) | 0.0267 (10) | 0.0073 (8) | 0.0057 (8) | 0.0036 (8) |
C23 | 0.0336 (11) | 0.0722 (15) | 0.0353 (12) | 0.0000 (10) | 0.0039 (9) | −0.0194 (11) |
C24 | 0.0422 (13) | 0.1079 (17) | 0.0259 (12) | 0.0157 (11) | 0.0098 (11) | −0.0101 (12) |
C25 | 0.0455 (12) | 0.0903 (14) | 0.0424 (13) | 0.0241 (11) | 0.0230 (11) | 0.0269 (11) |
C26 | 0.0388 (11) | 0.0508 (12) | 0.0423 (11) | 0.0167 (9) | 0.0198 (9) | 0.0170 (9) |
C27 | 0.0497 (13) | 0.0673 (15) | 0.0489 (14) | 0.0198 (12) | 0.0124 (11) | 0.0250 (12) |
C28 | 0.0623 (15) | 0.0347 (11) | 0.0722 (17) | 0.0160 (11) | 0.0137 (13) | 0.0040 (11) |
C29 | 0.0465 (12) | 0.0565 (13) | 0.0574 (14) | 0.0210 (10) | 0.0191 (11) | −0.0052 (11) |
C30 | 0.0300 (10) | 0.0560 (13) | 0.0595 (16) | 0.0058 (9) | 0.0123 (11) | −0.0027 (12) |
C31 | 0.0386 (12) | 0.0655 (15) | 0.0373 (13) | 0.0129 (11) | 0.0004 (10) | −0.0112 (11) |
C32 | 0.0371 (10) | 0.0379 (10) | 0.0269 (9) | 0.0031 (8) | 0.0122 (8) | 0.0030 (8) |
C33 | 0.0353 (10) | 0.0424 (9) | 0.0269 (9) | 0.0028 (8) | 0.0131 (8) | 0.0017 (8) |
C34 | 0.0417 (11) | 0.0486 (12) | 0.0368 (11) | 0.0050 (9) | 0.0136 (9) | −0.0025 (9) |
C35 | 0.0315 (10) | 0.0676 (14) | 0.0395 (12) | 0.0051 (10) | 0.0090 (9) | −0.0035 (10) |
C36 | 0.0408 (11) | 0.0716 (15) | 0.0437 (12) | −0.0157 (10) | 0.0201 (10) | −0.0145 (11) |
C37 | 0.0654 (15) | 0.0433 (12) | 0.0574 (14) | −0.0087 (10) | 0.0213 (13) | −0.0075 (11) |
C38 | 0.0483 (12) | 0.0443 (10) | 0.0404 (10) | 0.0028 (11) | 0.0098 (9) | 0.0030 (11) |
C39 | 0.0551 (15) | 0.0917 (19) | 0.0712 (17) | −0.0232 (14) | 0.0187 (13) | −0.0278 (15) |
Fe1—C24 | 2.021 (2) | C17—H17A | 0.9700 |
Fe1—C28 | 2.028 (2) | C17—H17B | 0.9700 |
Fe1—C30 | 2.030 (2) | C18—C19 | 1.536 (3) |
Fe1—C23 | 2.033 (2) | C18—H18A | 0.9700 |
Fe1—C27 | 2.034 (2) | C18—H18B | 0.9700 |
Fe1—C31 | 2.035 (2) | C19—C20 | 1.582 (3) |
Fe1—C29 | 2.035 (2) | C19—H19 | 0.9800 |
Fe1—C25 | 2.039 (2) | C20—C32 | 1.515 (2) |
Fe1—C26 | 2.0473 (19) | C20—C21 | 1.532 (2) |
Fe1—C22 | 2.0500 (18) | C20—H20 | 0.9800 |
O1—C32 | 1.213 (2) | C21—C22 | 1.504 (3) |
N1—C8 | 1.307 (2) | C21—H21 | 0.9800 |
N1—C15 | 1.376 (2) | C22—C26 | 1.425 (3) |
N2—C9 | 1.312 (2) | C22—C23 | 1.430 (3) |
N2—C10 | 1.377 (3) | C23—C24 | 1.407 (4) |
N3—C16 | 1.472 (3) | C23—H23 | 0.9800 |
N3—C7 | 1.475 (2) | C24—C25 | 1.400 (4) |
N3—C19 | 1.479 (3) | C24—H24 | 0.9800 |
C1—C6 | 1.386 (3) | C25—C26 | 1.409 (3) |
C1—C2 | 1.394 (3) | C25—H25 | 0.9800 |
C1—H1 | 0.9300 | C26—H26 | 0.9800 |
C2—C3 | 1.387 (3) | C27—C31 | 1.402 (4) |
C2—H2 | 0.9300 | C27—C28 | 1.419 (4) |
C3—C4 | 1.364 (3) | C27—H27 | 0.9800 |
C3—H3 | 0.9300 | C28—C29 | 1.403 (4) |
C4—C5 | 1.394 (3) | C28—H28 | 0.9800 |
C4—H4 | 0.9300 | C29—C30 | 1.394 (3) |
C5—C6 | 1.399 (3) | C29—H29 | 0.9800 |
C5—C9 | 1.455 (3) | C30—C31 | 1.420 (4) |
C6—C7 | 1.519 (3) | C30—H30 | 0.9800 |
C7—C8 | 1.524 (3) | C31—H31 | 0.9800 |
C7—C21 | 1.563 (2) | C32—C33 | 1.496 (3) |
C8—C9 | 1.424 (3) | C33—C38 | 1.384 (3) |
C10—C11 | 1.409 (3) | C33—C34 | 1.392 (3) |
C10—C15 | 1.418 (3) | C34—C35 | 1.385 (3) |
C11—C12 | 1.372 (3) | C34—H34 | 0.9300 |
C11—H11 | 0.9300 | C35—C36 | 1.382 (3) |
C12—C13 | 1.399 (4) | C35—H35 | 0.9300 |
C12—H12 | 0.9300 | C36—C37 | 1.387 (3) |
C13—C14 | 1.361 (3) | C36—C39 | 1.512 (3) |
C13—H13 | 0.9300 | C37—C38 | 1.385 (3) |
C14—C15 | 1.408 (3) | C37—H37 | 0.9300 |
C14—H14 | 0.9300 | C38—H38 | 0.9300 |
C16—C17 | 1.485 (4) | C39—H39A | 0.9600 |
C16—H16A | 0.9700 | C39—H39B | 0.9600 |
C16—H16B | 0.9700 | C39—H39C | 0.9600 |
C17—C18 | 1.492 (4) | ||
C24—Fe1—C28 | 114.77 (11) | C17—C18—H18A | 110.7 |
C24—Fe1—C30 | 130.48 (11) | C19—C18—H18A | 110.7 |
C28—Fe1—C30 | 67.62 (10) | C17—C18—H18B | 110.7 |
C24—Fe1—C23 | 40.62 (11) | C19—C18—H18B | 110.7 |
C28—Fe1—C23 | 109.02 (10) | H18A—C18—H18B | 108.8 |
C30—Fe1—C23 | 169.36 (10) | N3—C19—C18 | 104.69 (18) |
C24—Fe1—C27 | 147.63 (12) | N3—C19—C20 | 106.90 (14) |
C28—Fe1—C27 | 40.90 (11) | C18—C19—C20 | 119.08 (17) |
C30—Fe1—C27 | 67.97 (11) | N3—C19—H19 | 108.6 |
C23—Fe1—C27 | 116.67 (11) | C18—C19—H19 | 108.6 |
C24—Fe1—C31 | 170.27 (13) | C20—C19—H19 | 108.6 |
C28—Fe1—C31 | 68.32 (10) | C32—C20—C21 | 113.42 (14) |
C30—Fe1—C31 | 40.89 (11) | C32—C20—C19 | 112.91 (15) |
C23—Fe1—C31 | 148.57 (11) | C21—C20—C19 | 105.04 (14) |
C27—Fe1—C31 | 40.32 (10) | C32—C20—H20 | 108.4 |
C24—Fe1—C29 | 107.41 (10) | C21—C20—H20 | 108.4 |
C28—Fe1—C29 | 40.40 (10) | C19—C20—H20 | 108.4 |
C30—Fe1—C29 | 40.12 (9) | C22—C21—C20 | 117.01 (15) |
C23—Fe1—C29 | 130.92 (9) | C22—C21—C7 | 111.26 (14) |
C27—Fe1—C29 | 68.42 (10) | C20—C21—C7 | 102.99 (13) |
C31—Fe1—C29 | 68.50 (10) | C22—C21—H21 | 108.4 |
C24—Fe1—C25 | 40.34 (10) | C20—C21—H21 | 108.4 |
C28—Fe1—C25 | 145.53 (11) | C7—C21—H21 | 108.4 |
C30—Fe1—C25 | 108.23 (10) | C26—C22—C23 | 106.43 (19) |
C23—Fe1—C25 | 68.41 (11) | C26—C22—C21 | 127.66 (18) |
C27—Fe1—C25 | 171.78 (12) | C23—C22—C21 | 125.33 (19) |
C31—Fe1—C25 | 132.14 (12) | C26—C22—Fe1 | 69.54 (11) |
C29—Fe1—C25 | 113.78 (10) | C23—C22—Fe1 | 68.86 (11) |
C24—Fe1—C26 | 67.63 (10) | C21—C22—Fe1 | 132.99 (12) |
C28—Fe1—C26 | 173.02 (11) | C24—C23—C22 | 107.8 (2) |
C30—Fe1—C26 | 116.33 (9) | C24—C23—Fe1 | 69.23 (14) |
C23—Fe1—C26 | 68.17 (10) | C22—C23—Fe1 | 70.14 (11) |
C27—Fe1—C26 | 133.86 (9) | C24—C23—H23 | 126.1 |
C31—Fe1—C26 | 110.48 (9) | C22—C23—H23 | 126.1 |
C29—Fe1—C26 | 146.24 (9) | Fe1—C23—H23 | 126.1 |
C25—Fe1—C26 | 40.33 (9) | C25—C24—C23 | 109.3 (2) |
C24—Fe1—C22 | 68.55 (9) | C25—C24—Fe1 | 70.53 (14) |
C28—Fe1—C22 | 133.07 (10) | C23—C24—Fe1 | 70.15 (13) |
C30—Fe1—C22 | 148.43 (8) | C25—C24—H24 | 125.4 |
C23—Fe1—C22 | 40.99 (8) | C23—C24—H24 | 125.4 |
C27—Fe1—C22 | 110.41 (9) | Fe1—C24—H24 | 125.4 |
C31—Fe1—C22 | 116.75 (9) | C24—C25—C26 | 107.4 (2) |
C29—Fe1—C22 | 171.09 (9) | C24—C25—Fe1 | 69.13 (15) |
C25—Fe1—C22 | 68.71 (8) | C26—C25—Fe1 | 70.14 (12) |
C26—Fe1—C22 | 40.71 (8) | C24—C25—H25 | 126.3 |
C8—N1—C15 | 114.85 (16) | C26—C25—H25 | 126.3 |
C9—N2—C10 | 114.42 (16) | Fe1—C25—H25 | 126.3 |
C16—N3—C7 | 117.20 (17) | C25—C26—C22 | 109.0 (2) |
C16—N3—C19 | 106.19 (17) | C25—C26—Fe1 | 69.52 (12) |
C7—N3—C19 | 106.32 (14) | C22—C26—Fe1 | 69.74 (11) |
C6—C1—C2 | 118.8 (2) | C25—C26—H26 | 125.5 |
C6—C1—H1 | 120.6 | C22—C26—H26 | 125.5 |
C2—C1—H1 | 120.6 | Fe1—C26—H26 | 125.5 |
C3—C2—C1 | 120.8 (2) | C31—C27—C28 | 107.9 (2) |
C3—C2—H2 | 119.6 | C31—C27—Fe1 | 69.88 (13) |
C1—C2—H2 | 119.6 | C28—C27—Fe1 | 69.33 (13) |
C4—C3—C2 | 121.0 (2) | C31—C27—H27 | 126.1 |
C4—C3—H3 | 119.5 | C28—C27—H27 | 126.1 |
C2—C3—H3 | 119.5 | Fe1—C27—H27 | 126.1 |
C3—C4—C5 | 118.6 (2) | C29—C28—C27 | 108.3 (2) |
C3—C4—H4 | 120.7 | C29—C28—Fe1 | 70.07 (12) |
C5—C4—H4 | 120.7 | C27—C28—Fe1 | 69.76 (12) |
C4—C5—C6 | 121.28 (19) | C29—C28—H28 | 125.9 |
C4—C5—C9 | 129.57 (18) | C27—C28—H28 | 125.9 |
C6—C5—C9 | 109.10 (16) | Fe1—C28—H28 | 125.9 |
C1—C6—C5 | 119.44 (18) | C30—C29—C28 | 107.6 (2) |
C1—C6—C7 | 129.30 (18) | C30—C29—Fe1 | 69.74 (12) |
C5—C6—C7 | 111.14 (16) | C28—C29—Fe1 | 69.53 (13) |
N3—C7—C6 | 116.47 (15) | C30—C29—H29 | 126.2 |
N3—C7—C8 | 108.71 (14) | C28—C29—H29 | 126.2 |
C6—C7—C8 | 101.26 (14) | Fe1—C29—H29 | 126.2 |
N3—C7—C21 | 104.93 (14) | C29—C30—C31 | 109.0 (2) |
C6—C7—C21 | 114.01 (14) | C29—C30—Fe1 | 70.14 (13) |
C8—C7—C21 | 111.49 (14) | C31—C30—Fe1 | 69.74 (13) |
N1—C8—C9 | 123.25 (17) | C29—C30—H30 | 125.5 |
N1—C8—C7 | 126.25 (16) | C31—C30—H30 | 125.5 |
C9—C8—C7 | 110.48 (15) | Fe1—C30—H30 | 125.5 |
N2—C9—C8 | 123.75 (17) | C27—C31—C30 | 107.2 (2) |
N2—C9—C5 | 128.23 (18) | C27—C31—Fe1 | 69.80 (13) |
C8—C9—C5 | 108.02 (16) | C30—C31—Fe1 | 69.37 (13) |
N2—C10—C11 | 119.08 (19) | C27—C31—H31 | 126.4 |
N2—C10—C15 | 121.78 (17) | C30—C31—H31 | 126.4 |
C11—C10—C15 | 119.1 (2) | Fe1—C31—H31 | 126.4 |
C12—C11—C10 | 119.8 (2) | O1—C32—C33 | 120.16 (17) |
C12—C11—H11 | 120.1 | O1—C32—C20 | 121.03 (18) |
C10—C11—H11 | 120.1 | C33—C32—C20 | 118.80 (16) |
C11—C12—C13 | 120.7 (2) | C38—C33—C34 | 118.1 (2) |
C11—C12—H12 | 119.7 | C38—C33—C32 | 122.76 (19) |
C13—C12—H12 | 119.7 | C34—C33—C32 | 119.13 (16) |
C14—C13—C12 | 120.9 (2) | C35—C34—C33 | 120.86 (19) |
C14—C13—H13 | 119.5 | C35—C34—H34 | 119.6 |
C12—C13—H13 | 119.5 | C33—C34—H34 | 119.6 |
C13—C14—C15 | 119.9 (2) | C36—C35—C34 | 120.9 (2) |
C13—C14—H14 | 120.1 | C36—C35—H35 | 119.5 |
C15—C14—H14 | 120.1 | C34—C35—H35 | 119.5 |
N1—C15—C14 | 118.58 (19) | C35—C36—C37 | 118.2 (2) |
N1—C15—C10 | 121.85 (17) | C35—C36—C39 | 120.6 (2) |
C14—C15—C10 | 119.55 (19) | C37—C36—C39 | 121.2 (2) |
N3—C16—C17 | 102.6 (2) | C38—C37—C36 | 121.0 (2) |
N3—C16—H16A | 111.2 | C38—C37—H37 | 119.5 |
C17—C16—H16A | 111.2 | C36—C37—H37 | 119.5 |
N3—C16—H16B | 111.2 | C33—C38—C37 | 120.8 (2) |
C17—C16—H16B | 111.2 | C33—C38—H38 | 119.6 |
H16A—C16—H16B | 109.2 | C37—C38—H38 | 119.6 |
C16—C17—C18 | 104.7 (2) | C36—C39—H39A | 109.5 |
C16—C17—H17A | 110.8 | C36—C39—H39B | 109.5 |
C18—C17—H17A | 110.8 | H39A—C39—H39B | 109.5 |
C16—C17—H17B | 110.8 | C36—C39—H39C | 109.5 |
C18—C17—H17B | 110.8 | H39A—C39—H39C | 109.5 |
H17A—C17—H17B | 108.9 | H39B—C39—H39C | 109.5 |
C17—C18—C19 | 105.4 (2) | ||
C6—C1—C2—C3 | 1.4 (3) | C22—Fe1—C24—C23 | −38.04 (14) |
C1—C2—C3—C4 | 0.2 (4) | C23—C24—C25—C26 | −0.3 (3) |
C2—C3—C4—C5 | −1.1 (3) | Fe1—C24—C25—C26 | −59.95 (15) |
C3—C4—C5—C6 | 0.5 (3) | C23—C24—C25—Fe1 | 59.65 (17) |
C3—C4—C5—C9 | 177.6 (2) | C28—Fe1—C25—C24 | 55.1 (2) |
C2—C1—C6—C5 | −2.0 (3) | C30—Fe1—C25—C24 | 131.93 (15) |
C2—C1—C6—C7 | −177.6 (2) | C23—Fe1—C25—C24 | −37.33 (15) |
C4—C5—C6—C1 | 1.1 (3) | C31—Fe1—C25—C24 | 171.09 (17) |
C9—C5—C6—C1 | −176.54 (17) | C29—Fe1—C25—C24 | 89.21 (16) |
C4—C5—C6—C7 | 177.49 (17) | C26—Fe1—C25—C24 | −118.6 (2) |
C9—C5—C6—C7 | −0.2 (2) | C22—Fe1—C25—C24 | −81.52 (15) |
C16—N3—C7—C6 | 45.0 (2) | C24—Fe1—C25—C26 | 118.6 (2) |
C19—N3—C7—C6 | 163.50 (15) | C28—Fe1—C25—C26 | 173.73 (17) |
C16—N3—C7—C8 | 158.52 (18) | C30—Fe1—C25—C26 | −109.48 (14) |
C19—N3—C7—C8 | −82.99 (17) | C23—Fe1—C25—C26 | 81.26 (15) |
C16—N3—C7—C21 | −82.1 (2) | C31—Fe1—C25—C26 | −70.32 (18) |
C19—N3—C7—C21 | 36.39 (18) | C29—Fe1—C25—C26 | −152.20 (14) |
C1—C6—C7—N3 | −66.0 (3) | C22—Fe1—C25—C26 | 37.07 (13) |
C5—C6—C7—N3 | 118.03 (17) | C24—C25—C26—C22 | 0.6 (2) |
C1—C6—C7—C8 | 176.3 (2) | Fe1—C25—C26—C22 | −58.69 (13) |
C5—C6—C7—C8 | 0.35 (19) | C24—C25—C26—Fe1 | 59.31 (16) |
C1—C6—C7—C21 | 56.4 (3) | C23—C22—C26—C25 | −0.7 (2) |
C5—C6—C7—C21 | −119.49 (17) | C21—C22—C26—C25 | −172.28 (17) |
C15—N1—C8—C9 | −2.2 (2) | Fe1—C22—C26—C25 | 58.56 (14) |
C15—N1—C8—C7 | 176.29 (16) | C23—C22—C26—Fe1 | −59.25 (13) |
N3—C7—C8—N1 | 57.8 (2) | C21—C22—C26—Fe1 | 129.16 (18) |
C6—C7—C8—N1 | −179.06 (17) | C24—Fe1—C26—C25 | −37.92 (15) |
C21—C7—C8—N1 | −57.4 (2) | C30—Fe1—C26—C25 | 87.50 (17) |
N3—C7—C8—C9 | −123.62 (16) | C23—Fe1—C26—C25 | −81.92 (16) |
C6—C7—C8—C9 | −0.43 (18) | C27—Fe1—C26—C25 | 171.48 (17) |
C21—C7—C8—C9 | 121.19 (15) | C31—Fe1—C26—C25 | 131.82 (17) |
C10—N2—C9—C8 | 2.9 (3) | C29—Fe1—C26—C25 | 50.2 (2) |
C10—N2—C9—C5 | −176.79 (17) | C22—Fe1—C26—C25 | −120.6 (2) |
N1—C8—C9—N2 | −0.7 (3) | C24—Fe1—C26—C22 | 82.64 (14) |
C7—C8—C9—N2 | −179.35 (16) | C30—Fe1—C26—C22 | −151.93 (12) |
N1—C8—C9—C5 | 179.05 (16) | C23—Fe1—C26—C22 | 38.65 (13) |
C7—C8—C9—C5 | 0.37 (19) | C27—Fe1—C26—C22 | −67.95 (17) |
C4—C5—C9—N2 | 2.2 (3) | C31—Fe1—C26—C22 | −107.62 (14) |
C6—C5—C9—N2 | 179.57 (18) | C29—Fe1—C26—C22 | 170.73 (16) |
C4—C5—C9—C8 | −177.53 (19) | C25—Fe1—C26—C22 | 120.6 (2) |
C6—C5—C9—C8 | −0.1 (2) | C24—Fe1—C27—C31 | 170.5 (2) |
C9—N2—C10—C11 | 176.55 (18) | C28—Fe1—C27—C31 | 119.2 (2) |
C9—N2—C10—C15 | −2.3 (3) | C30—Fe1—C27—C31 | 38.42 (14) |
N2—C10—C11—C12 | −177.5 (2) | C23—Fe1—C27—C31 | −152.10 (14) |
C15—C10—C11—C12 | 1.4 (3) | C29—Fe1—C27—C31 | 81.78 (16) |
C10—C11—C12—C13 | −0.6 (4) | C26—Fe1—C27—C31 | −67.52 (19) |
C11—C12—C13—C14 | −0.6 (4) | C22—Fe1—C27—C31 | −107.69 (15) |
C12—C13—C14—C15 | 1.0 (4) | C24—Fe1—C27—C28 | 51.3 (3) |
C8—N1—C15—C14 | −175.64 (17) | C30—Fe1—C27—C28 | −80.78 (16) |
C8—N1—C15—C10 | 2.7 (2) | C23—Fe1—C27—C28 | 88.70 (17) |
C13—C14—C15—N1 | 178.2 (2) | C31—Fe1—C27—C28 | −119.2 (2) |
C13—C14—C15—C10 | −0.2 (3) | C29—Fe1—C27—C28 | −37.43 (15) |
N2—C10—C15—N1 | −0.5 (3) | C26—Fe1—C27—C28 | 173.28 (15) |
C11—C10—C15—N1 | −179.31 (18) | C22—Fe1—C27—C28 | 133.11 (15) |
N2—C10—C15—C14 | 177.81 (18) | C31—C27—C28—C29 | 0.2 (3) |
C11—C10—C15—C14 | −1.0 (3) | Fe1—C27—C28—C29 | 59.69 (16) |
C7—N3—C16—C17 | 157.8 (2) | C31—C27—C28—Fe1 | −59.46 (15) |
C19—N3—C16—C17 | 39.2 (3) | C24—Fe1—C28—C29 | 88.07 (16) |
N3—C16—C17—C18 | −39.0 (3) | C30—Fe1—C28—C29 | −37.61 (15) |
C16—C17—C18—C19 | 24.4 (3) | C23—Fe1—C28—C29 | 131.59 (14) |
C16—N3—C19—C18 | −23.9 (2) | C27—Fe1—C28—C29 | −119.3 (2) |
C7—N3—C19—C18 | −149.40 (17) | C31—Fe1—C28—C29 | −81.88 (16) |
C16—N3—C19—C20 | 103.32 (19) | C25—Fe1—C28—C29 | 52.3 (2) |
C7—N3—C19—C20 | −22.20 (19) | C22—Fe1—C28—C29 | 171.18 (14) |
C17—C18—C19—N3 | −0.5 (3) | C24—Fe1—C28—C27 | −152.62 (16) |
C17—C18—C19—C20 | −119.9 (2) | C30—Fe1—C28—C27 | 81.71 (16) |
N3—C19—C20—C32 | −124.84 (16) | C23—Fe1—C28—C27 | −109.10 (16) |
C18—C19—C20—C32 | −6.7 (3) | C31—Fe1—C28—C27 | 37.44 (15) |
N3—C19—C20—C21 | −0.76 (19) | C29—Fe1—C28—C27 | 119.3 (2) |
C18—C19—C20—C21 | 117.4 (2) | C25—Fe1—C28—C27 | 171.58 (19) |
C32—C20—C21—C22 | −92.15 (19) | C22—Fe1—C28—C27 | −69.50 (19) |
C19—C20—C21—C22 | 144.09 (16) | C27—C28—C29—C30 | 0.1 (3) |
C32—C20—C21—C7 | 145.49 (15) | Fe1—C28—C29—C30 | 59.56 (15) |
C19—C20—C21—C7 | 21.73 (17) | C27—C28—C29—Fe1 | −59.51 (16) |
N3—C7—C21—C22 | −162.14 (15) | C24—Fe1—C29—C30 | 133.14 (17) |
C6—C7—C21—C22 | 69.26 (19) | C28—Fe1—C29—C30 | −118.9 (2) |
C8—C7—C21—C22 | −44.6 (2) | C23—Fe1—C29—C30 | 171.79 (18) |
N3—C7—C21—C20 | −36.00 (17) | C27—Fe1—C29—C30 | −80.99 (17) |
C6—C7—C21—C20 | −164.60 (15) | C31—Fe1—C29—C30 | −37.49 (17) |
C8—C7—C21—C20 | 81.50 (17) | C25—Fe1—C29—C30 | 90.42 (18) |
C20—C21—C22—C26 | −32.5 (2) | C26—Fe1—C29—C30 | 57.5 (2) |
C7—C21—C22—C26 | 85.5 (2) | C24—Fe1—C29—C28 | −108.00 (16) |
C20—C21—C22—C23 | 157.43 (18) | C30—Fe1—C29—C28 | 118.9 (2) |
C7—C21—C22—C23 | −84.6 (2) | C23—Fe1—C29—C28 | −69.34 (19) |
C20—C21—C22—Fe1 | 64.2 (2) | C27—Fe1—C29—C28 | 37.88 (15) |
C7—C21—C22—Fe1 | −177.84 (14) | C31—Fe1—C29—C28 | 81.38 (16) |
C24—Fe1—C22—C26 | −80.20 (15) | C25—Fe1—C29—C28 | −150.71 (15) |
C28—Fe1—C22—C26 | 175.39 (15) | C26—Fe1—C29—C28 | 176.39 (17) |
C30—Fe1—C22—C26 | 53.7 (2) | C28—C29—C30—C31 | −0.3 (3) |
C23—Fe1—C22—C26 | −117.90 (19) | Fe1—C29—C30—C31 | 59.11 (16) |
C27—Fe1—C22—C26 | 134.51 (13) | C28—C29—C30—Fe1 | −59.43 (16) |
C31—Fe1—C22—C26 | 90.85 (15) | C24—Fe1—C30—C29 | −66.3 (2) |
C25—Fe1—C22—C26 | −36.74 (14) | C28—Fe1—C30—C29 | 37.87 (16) |
C24—Fe1—C22—C23 | 37.71 (16) | C23—Fe1—C30—C29 | −35.7 (7) |
C28—Fe1—C22—C23 | −66.71 (19) | C27—Fe1—C30—C29 | 82.21 (17) |
C30—Fe1—C22—C23 | 171.6 (2) | C31—Fe1—C30—C29 | 120.1 (2) |
C27—Fe1—C22—C23 | −107.58 (16) | C25—Fe1—C30—C29 | −105.55 (17) |
C31—Fe1—C22—C23 | −151.24 (16) | C22—Fe1—C30—C29 | 175.65 (16) |
C25—Fe1—C22—C23 | 81.17 (16) | C24—Fe1—C30—C31 | 173.62 (16) |
C26—Fe1—C22—C23 | 117.90 (19) | C28—Fe1—C30—C31 | −82.25 (17) |
C24—Fe1—C22—C21 | 156.9 (2) | C23—Fe1—C30—C31 | −155.8 (6) |
C28—Fe1—C22—C21 | 52.4 (2) | C27—Fe1—C30—C31 | −37.90 (15) |
C30—Fe1—C22—C21 | −69.3 (3) | C29—Fe1—C30—C31 | −120.1 (2) |
C23—Fe1—C22—C21 | 119.2 (3) | C25—Fe1—C30—C31 | 134.33 (16) |
C27—Fe1—C22—C21 | 11.6 (2) | C26—Fe1—C30—C31 | 91.43 (16) |
C31—Fe1—C22—C21 | −32.1 (2) | C22—Fe1—C30—C31 | 55.5 (2) |
C25—Fe1—C22—C21 | −159.7 (2) | C28—C27—C31—C30 | −0.4 (2) |
C26—Fe1—C22—C21 | −122.9 (2) | Fe1—C27—C31—C30 | −59.54 (16) |
C26—C22—C23—C24 | 0.5 (2) | C28—C27—C31—Fe1 | 59.12 (16) |
C21—C22—C23—C24 | 172.34 (18) | C29—C30—C31—C27 | 0.5 (3) |
Fe1—C22—C23—C24 | −59.19 (16) | Fe1—C30—C31—C27 | 59.82 (16) |
C26—C22—C23—Fe1 | 59.69 (13) | C29—C30—C31—Fe1 | −59.35 (16) |
C21—C22—C23—Fe1 | −128.47 (17) | C28—Fe1—C31—C27 | −37.96 (15) |
C28—Fe1—C23—C24 | −106.18 (17) | C30—Fe1—C31—C27 | −118.4 (2) |
C30—Fe1—C23—C24 | −36.4 (7) | C23—Fe1—C31—C27 | 53.3 (2) |
C27—Fe1—C23—C24 | −150.01 (16) | C29—Fe1—C31—C27 | −81.56 (15) |
C31—Fe1—C23—C24 | 174.5 (2) | C25—Fe1—C31—C27 | 175.25 (15) |
C29—Fe1—C23—C24 | −66.3 (2) | C26—Fe1—C31—C27 | 134.67 (14) |
C25—Fe1—C23—C24 | 37.08 (15) | C22—Fe1—C31—C27 | 90.55 (16) |
C26—Fe1—C23—C24 | 80.64 (16) | C28—Fe1—C31—C30 | 80.40 (16) |
C22—Fe1—C23—C24 | 119.0 (2) | C23—Fe1—C31—C30 | 171.7 (2) |
C24—Fe1—C23—C22 | −119.0 (2) | C27—Fe1—C31—C30 | 118.4 (2) |
C28—Fe1—C23—C22 | 134.79 (14) | C29—Fe1—C31—C30 | 36.80 (15) |
C30—Fe1—C23—C22 | −155.4 (6) | C25—Fe1—C31—C30 | −66.39 (18) |
C27—Fe1—C23—C22 | 90.96 (16) | C26—Fe1—C31—C30 | −106.97 (14) |
C31—Fe1—C23—C22 | 55.5 (3) | C22—Fe1—C31—C30 | −151.09 (13) |
C29—Fe1—C23—C22 | 174.69 (14) | C21—C20—C32—O1 | −27.9 (3) |
C25—Fe1—C23—C22 | −81.95 (15) | C19—C20—C32—O1 | 91.5 (2) |
C26—Fe1—C23—C22 | −38.39 (13) | C21—C20—C32—C33 | 153.27 (16) |
C22—C23—C24—C25 | −0.1 (3) | C19—C20—C32—C33 | −87.4 (2) |
Fe1—C23—C24—C25 | −59.89 (17) | O1—C32—C33—C38 | −163.1 (2) |
C22—C23—C24—Fe1 | 59.76 (14) | C20—C32—C33—C38 | 15.8 (3) |
C28—Fe1—C24—C25 | −149.24 (15) | O1—C32—C33—C34 | 15.9 (3) |
C30—Fe1—C24—C25 | −68.29 (18) | C20—C32—C33—C34 | −165.23 (18) |
C23—Fe1—C24—C25 | 120.0 (2) | C38—C33—C34—C35 | −0.9 (3) |
C27—Fe1—C24—C25 | 176.53 (18) | C32—C33—C34—C35 | 180.0 (2) |
C29—Fe1—C24—C25 | −106.48 (15) | C33—C34—C35—C36 | 0.7 (3) |
C26—Fe1—C24—C25 | 37.92 (13) | C34—C35—C36—C37 | 0.2 (3) |
C22—Fe1—C24—C25 | 81.95 (14) | C34—C35—C36—C39 | −177.3 (2) |
C28—Fe1—C24—C23 | 90.77 (17) | C35—C36—C37—C38 | −0.9 (4) |
C30—Fe1—C24—C23 | 171.71 (16) | C39—C36—C37—C38 | 176.7 (2) |
C27—Fe1—C24—C23 | 56.5 (2) | C34—C33—C38—C37 | 0.3 (3) |
C29—Fe1—C24—C23 | 133.53 (15) | C32—C33—C38—C37 | 179.3 (2) |
C25—Fe1—C24—C23 | −120.0 (2) | C36—C37—C38—C33 | 0.6 (4) |
C26—Fe1—C24—C23 | −82.07 (15) |
Cg1 is the centroid of C33–C39 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27···O1 | 0.98 | 2.57 | 3.332 (4) | 134 |
C28—H28···O1i | 0.98 | 2.55 | 3.474 (3) | 157 |
C25—H25···Cg1ii | 0.98 | 2.83 | 3.781 (3) | 163 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x, y, z−1. |
Cg1 is the centroid of C33–C39 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27···O1 | 0.98 | 2.57 | 3.332 (4) | 134 |
C28—H28···O1i | 0.98 | 2.55 | 3.474 (3) | 157 |
C25—H25···Cg1ii | 0.98 | 2.83 | 3.781 (3) | 163 |
Symmetry codes: (i) x, −y, z−1/2; (ii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C34H28N3O)] |
Mr | 615.53 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 12.0017 (4), 30.2487 (10), 9.3597 (3) |
β (°) | 116.179 (1) |
V (Å3) | 3049.35 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.836, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17682, 5362, 5128 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.062, 1.03 |
No. of reflections | 5362 |
No. of parameters | 399 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.15 |
Absolute structure | Flack (1983), 2669 Friedel pairs |
Absolute structure parameter | −0.007 (9) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.
References
Biot, C., Dessolin, J., Richard, I. & Drive, D. (2004). J. Organomet. Chem. 689, 4678–4682. Web of Science CrossRef CAS Google Scholar
Bruker (2004). APEX, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H. (2002). Appl. Organomet. Chem. 16, 17–20. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625. Web of Science CrossRef CAS Google Scholar
Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. Web of Science CrossRef CAS PubMed Google Scholar
Kathiravan, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6116–6120. Web of Science CrossRef CAS Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, B. V., Ribeiro, N. M., Vargas, M. D., Lanznaster, M., Carneiro, J. W. M., Krogh, R., Andricopulo, A. D., Dias, L. C. & Pinto, A. C. (2010). Dalton Trans. 39, 7338–7344. Web of Science CrossRef CAS PubMed Google Scholar
Suhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, m512–m513. CSD CrossRef CAS IUCr Journals Google Scholar
Sureshbabu, A. R., Gavaskar, D. & Raghunathan, R. (2012). Tetrahedron Lett. 53, 6676–6681. Web of Science CrossRef CAS Google Scholar
Sureshbabu, A. R. & Raghunathan, R. (2008). Tetrahedron Lett. 49, 4487–4490. CAS Google Scholar
Sureshbabu, A. R., Raghunathan, R. & Satiskumar, B. K. (2009). Tetrahedron Lett. 50, 2818–2821. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.