organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-cyano-N′-(cyclo­hexyl­­idene)acetohydrazide

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Chemistry, American University in Cairo, PO Box 74, New Cairo 11835, Egypt, and cInstitute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 April 2014; accepted 24 April 2014; online 1 August 2014)

In the title compound, C9H13N3O, the cyclo­hexyl­idene ring adopts a chair conformation and the bond-angle sum at the C atom linked to the N atom is 359.6°. The cyano­acetohydrazide grouping is close to planar (r.m.s. deviation for the non-H atoms = 0.031 Å) and subtends a dihedral angle of 64.08 (4)° with the four C atoms forming the seat of the chair. The C=O and N—H groups are in a syn conformation (O—C—N—H = −5°). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops; this dimer linkage is reinforced by a pair of C—H⋯O inter­actions, which generate R22(14) loops. The dimers are linked by C—H⋯Nc (c = cyanide) inter­actions into [100] ladders, which feature C(4) chains and R44(20) loops.

1. Related literature

For background to the role of hydrazides as potential anti-cancer agents, see: Sechi et al. (2008[Sechi, M., Azeena, U., Delussu, M. P., Dallochio, R., Dessi, A., Cosseddu, A., Pala, N. & Neamati, N. (2008). Molecules, 13, 2442-2461.]); Manivel et al. (2009[Manivel, P., Mohana Roopan, S., Sathish Kumar, R. & Nawazkhan, F. (2009). J. Chil. Chem. Soc. 54, 183-185.]); Mohareb et al. (2011[Mohareb, R. M., Fleita, D. H. & Sakka Ola, K. (2011). Molecules, 16, 16-27.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H13N3O

  • Mr = 179.22

  • Triclinic, [P \overline 1]

  • a = 4.8420 (2) Å

  • b = 9.7407 (7) Å

  • c = 10.7071 (8) Å

  • α = 73.917 (9)°

  • β = 82.819 (10)°

  • γ = 75.980 (9)°

  • V = 469.87 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.13 × 0.12 × 0.04 mm

2.2. Data collection

  • Rigaku Mercury CCD diffractometer

  • 6176 measured reflections

  • 2136 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.08

  • 2136 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.900 (14) 2.052 (15) 2.9399 (12) 168.4 (11)
C6—H6B⋯O1i 0.99 2.32 3.2736 (13) 161
C8—H8B⋯N3ii 0.99 2.41 3.3783 (14) 165
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For background to the role of hydrazides as potential anti-cancer agents, see: Sechi et al. (2008); Manivel et al. (2009); Mohareb et al. (2011).

Experimental top

Cyclohexanone (0.98 g, 0.01 mol) was added to a solution of cyanoacetylhydrazine (0.99 g, 0.01 mol) in 1,4-dioxane (20 ml). The mixture was heated under reflux for 2 h and then poured into a beaker containing an ice/water mixture: the solid product was collected by filtration. Yellow slabs of the title compound were obtained by slow evaporation of an ethanol solution.

Refinement top

The N-bound H atom was located in a difference map and its position was freely refined. The C-bound H atoms were placed in idealized locations (C—H = 0.99 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Computing details top

Data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. An inversion dimer in the crystal of the title compound, with N—H···O and C—H···O hydrogen bonds indicated by double-dashed lines. Symmetry code: (i) –x, 1–y, –z.
[Figure 3] Fig. 3. Part of a [100] double chain in the crystal of the title compound, with hydrogen bonds indicated by double-dashed lines. Symmetry codes: (i) –x, 1–y, –z; (ii) 1 + x, y, z.
2-Cyano-N'-(cyclohexylidene)acetohydrazide top
Crystal data top
C9H13N3OZ = 2
Mr = 179.22F(000) = 192
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8420 (2) ÅCell parameters from 5790 reflections
b = 9.7407 (7) Åθ = 2.6–27.5°
c = 10.7071 (8) ŵ = 0.09 mm1
α = 73.917 (9)°T = 100 K
β = 82.819 (10)°Cut slab, yellow
γ = 75.980 (9)°0.13 × 0.12 × 0.04 mm
V = 469.87 (5) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
1789 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω scansh = 65
6176 measured reflectionsk = 1211
2136 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0762P]
where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H13N3Oγ = 75.980 (9)°
Mr = 179.22V = 469.87 (5) Å3
Triclinic, P1Z = 2
a = 4.8420 (2) ÅMo Kα radiation
b = 9.7407 (7) ŵ = 0.09 mm1
c = 10.7071 (8) ÅT = 100 K
α = 73.917 (9)°0.13 × 0.12 × 0.04 mm
β = 82.819 (10)°
Data collection top
Rigaku Mercury CCD
diffractometer
1789 reflections with I > 2σ(I)
6176 measured reflectionsRint = 0.024
2136 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
2136 reflectionsΔρmin = 0.19 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5886 (2)0.25153 (11)0.23432 (10)0.0172 (2)
C20.7514 (2)0.14590 (11)0.34545 (10)0.0201 (2)
H2A0.66640.16730.42890.024*
H2B0.95220.15600.33500.024*
C30.7394 (2)0.01067 (12)0.34647 (11)0.0264 (3)
H3A0.85870.08150.41500.032*
H3B0.54060.02330.36730.032*
C40.8456 (3)0.04206 (13)0.21466 (12)0.0290 (3)
H4A0.82250.14070.21590.035*
H4B1.05130.04150.19890.035*
C50.6822 (2)0.07141 (13)0.10418 (11)0.0272 (3)
H5A0.48010.06360.11480.033*
H5B0.76310.05110.01990.033*
C60.6986 (2)0.22686 (12)0.10284 (10)0.0217 (2)
H6A0.89830.23850.08430.026*
H6B0.58150.29920.03430.026*
C70.0539 (2)0.51593 (11)0.19148 (10)0.0173 (2)
C80.1182 (2)0.51675 (11)0.33402 (10)0.0188 (2)
H8A0.11500.41560.38730.023*
H8B0.03200.55220.36290.023*
C90.3962 (2)0.61033 (11)0.35514 (10)0.0190 (2)
N10.36168 (17)0.33947 (9)0.26408 (8)0.0176 (2)
N20.19288 (17)0.42828 (9)0.16325 (8)0.0183 (2)
H10.227 (3)0.4221 (14)0.0801 (14)0.022*
N30.61224 (19)0.68227 (10)0.37675 (9)0.0251 (2)
O10.21717 (15)0.59183 (8)0.10701 (7)0.0228 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (4)0.0185 (5)0.0157 (5)0.0059 (4)0.0009 (4)0.0038 (4)
C20.0207 (5)0.0225 (5)0.0153 (5)0.0025 (4)0.0019 (4)0.0038 (4)
C30.0310 (6)0.0197 (5)0.0229 (6)0.0032 (4)0.0056 (5)0.0016 (4)
C40.0347 (6)0.0210 (5)0.0309 (6)0.0078 (4)0.0109 (5)0.0102 (5)
C50.0217 (5)0.0400 (7)0.0266 (6)0.0090 (5)0.0045 (4)0.0201 (5)
C60.0179 (5)0.0282 (6)0.0150 (5)0.0001 (4)0.0000 (4)0.0036 (4)
C70.0189 (5)0.0185 (5)0.0151 (5)0.0058 (4)0.0002 (4)0.0043 (4)
C80.0192 (5)0.0217 (5)0.0155 (5)0.0036 (4)0.0009 (4)0.0057 (4)
C90.0241 (5)0.0199 (5)0.0149 (5)0.0085 (4)0.0000 (4)0.0050 (4)
N10.0196 (4)0.0185 (4)0.0142 (4)0.0041 (3)0.0031 (3)0.0027 (3)
N20.0196 (4)0.0215 (5)0.0118 (4)0.0018 (3)0.0011 (3)0.0034 (3)
N30.0253 (5)0.0255 (5)0.0240 (5)0.0037 (4)0.0020 (4)0.0087 (4)
O10.0221 (4)0.0263 (4)0.0163 (4)0.0009 (3)0.0027 (3)0.0043 (3)
Geometric parameters (Å, º) top
C1—N11.2845 (13)C5—H5A0.99
C1—C21.5032 (14)C5—H5B0.99
C1—C61.5036 (14)C6—H6A0.99
C2—C31.5371 (15)C6—H6B0.99
C2—H2A0.99C7—O11.2306 (12)
C2—H2B0.99C7—N21.3442 (13)
C3—C41.5269 (16)C7—C81.5209 (14)
C3—H3A0.99C8—C91.4622 (14)
C3—H3B0.99C8—H8A0.99
C4—C51.5273 (17)C8—H8B0.99
C4—H4A0.99C9—N31.1457 (13)
C4—H4B0.99N1—N21.3938 (12)
C5—C61.5314 (16)N2—H10.900 (14)
N1—C1—C2116.83 (9)C4—C5—H5B109.4
N1—C1—C6128.63 (9)C6—C5—H5B109.4
C2—C1—C6114.13 (8)H5A—C5—H5B108.0
C1—C2—C3108.83 (9)C1—C6—C5108.10 (9)
C1—C2—H2A109.9C1—C6—H6A110.1
C3—C2—H2A109.9C5—C6—H6A110.1
C1—C2—H2B109.9C1—C6—H6B110.1
C3—C2—H2B109.9C5—C6—H6B110.1
H2A—C2—H2B108.3H6A—C6—H6B108.4
C4—C3—C2111.01 (9)O1—C7—N2122.06 (9)
C4—C3—H3A109.4O1—C7—C8121.97 (9)
C2—C3—H3A109.4N2—C7—C8115.97 (9)
C4—C3—H3B109.4C9—C8—C7111.64 (8)
C2—C3—H3B109.4C9—C8—H8A109.3
H3A—C3—H3B108.0C7—C8—H8A109.3
C3—C4—C5111.44 (9)C9—C8—H8B109.3
C3—C4—H4A109.3C7—C8—H8B109.3
C5—C4—H4A109.3H8A—C8—H8B108.0
C3—C4—H4B109.3N3—C9—C8177.32 (11)
C5—C4—H4B109.3C1—N1—N2117.65 (9)
H4A—C4—H4B108.0C7—N2—N1119.30 (9)
C4—C5—C6111.25 (9)C7—N2—H1116.5 (8)
C4—C5—H5A109.4N1—N2—H1123.6 (8)
C6—C5—H5A109.4
N1—C1—C2—C3114.56 (10)O1—C7—C8—C93.02 (14)
C6—C1—C2—C358.72 (11)N2—C7—C8—C9177.51 (9)
C1—C2—C3—C454.68 (12)C2—C1—N1—N2173.88 (8)
C2—C3—C4—C554.91 (12)C6—C1—N1—N21.72 (16)
C3—C4—C5—C655.98 (12)O1—C7—N2—N1176.79 (9)
N1—C1—C6—C5113.10 (12)C8—C7—N2—N13.75 (13)
C2—C1—C6—C559.23 (11)C1—N1—N2—C7176.44 (9)
C4—C5—C6—C156.13 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.900 (14)2.052 (15)2.9399 (12)168.4 (11)
C6—H6B···O1i0.992.323.2736 (13)161
C8—H8B···N3ii0.992.413.3783 (14)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.900 (14)2.052 (15)2.9399 (12)168.4 (11)
C6—H6B···O1i0.992.323.2736 (13)161
C8—H8B···N3ii0.992.413.3783 (14)165
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the American University in Cairo for financial support.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManivel, P., Mohana Roopan, S., Sathish Kumar, R. & Nawazkhan, F. (2009). J. Chil. Chem. Soc. 54, 183–185.  CAS Google Scholar
First citationMohareb, R. M., Fleita, D. H. & Sakka Ola, K. (2011). Molecules, 16, 16–27.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSechi, M., Azeena, U., Delussu, M. P., Dallochio, R., Dessi, A., Cosseddu, A., Pala, N. & Neamati, N. (2008). Molecules, 13, 2442–2461.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds